
1

Abstract— K-means algorithm is one of the

unsupervised learning clustering algorithms that can be
used to solve some problems such as marketing
strategies, determining criteria beasiswaa receiver,
classifying documents until the vehicle identification
number. Computational processing time of the
sequential k-means algorithm is relatively high at the
time of execution. This is because the computational
processes executed according to a certain order before
the next computation.

This paper proposed an parallel to accelerate the
execution time of k-means algorithm which is utilizing
GPGPU that supports high speed parallel computing. It
will be implemented with CUDA from NVIDIA. The
experiment results indicate that parallel K-Means
achieve the acceleration on GPGPU.

Keywords- k-means, parallel computing, GPGPU, CUDA

I. INTRODUCTION

Formation of clustering is one of the data mining
methods that are unsupervised learning. Clustering is a
tool for data analysis, which solve the problem of
classification. Clustering of data mining is used to
discover patterns of distribution in the dataset that can
be used for the data analysis process. The similarity of
the object obtained from the proximity of the values of
the object attribute that describes the data, while the
data object represented partially a point in multi-
dimensional space [1].

There are two methods of clustering, namely
hierarchical clustering and partitioning. Hierarchical
clustering method consists of complete linkage
clustering, single linkage clustering, average linkage
clustering and centroid linkage clustering , while the
partitioning method consists of k-means and fuzzy k-

means. K-Means method is the most simple and
common [2]. In 1967 Mac Queen developed a K-Means
algorithm [3] which is one of the clustering methods
are partitioning that separates data into different groups
[4]. By iteratively partitioning , K - Means is able to
minimize the average distance of each data to his
cluster .

K - means clustering algorithm can be used to solve
some problems such as marketing strategy [5], the
determination of the criteria beasiswaa receiver [6],
classifying documents [7] to the identification plate of
the vehicle [8]. The advantages of k- means clustering
algorithm capable of classifying such objects efficiently
thus improving the accuracy of clustering process [9].
However, the computational time required in the
process of clustering is still quite high [10]. This is
because the computation is performed in a sequential
manner that is sequential and gradual , there is a queue
process . each computing process must be completed
before the next computations , thus requiring a high
execution time [10]. Execution time is also influenced
by the amount of data processed .

Another Disisis, utilization of the graphics card into
the era of General Purpose Graphical Processing Units
(GPGPU) , namely the use of graphics cards to work
umum.GPU computationally capable of parallel
processing that can be used to improve the performance
of computing.

Based on these facts, in this study the proposed
parallelization of the k- means clustering to obtain
acceleration algorithm execution time.

On the other hand, the use of the graphics card into
the era of General Purpose Graphical Processing Units
(GPGPU), namely the use of graphics cards to perform
computing umum.GPU able to perform parallel
processing that can be utilized to improve the
performance of computing

The aim of this paper is to accelerate the
execution time of k-means algorithm with a parallel.
It will be implemented on GPGPU technology with a
software platform which is CUDA from NVIDIA.

ACCELERATION K-MEANS CLUSTERING
WITH THE COMPUTE UNIFIED DEVICE

ARCHITECTURE (CUDA)
(Case Study at SMA ISLAM HIDAYATULLAH)

Wahyu Cepta Gusta
Faculty of Computer Science - Dian Nuswantoro University

Jl Nakula I No. 5-11 Semarang 50131, Indonesia
cyberblackwg@gmail.com

2

653

This paper is organized as follows. Section 1
summarizes the motivation. Section 2 outlines the
preliminary concepts of k-means. Section 3 introduces
the GPGPU technology. Section 4 explains the CUDA
environment. The experimental result will be
discussed in the section 5. The final section is a
conclusion of the paper.

II. K-MEANS ALGORITHM ON THE GPU

The main idea of GPU-based k-means is that data-
parallel, compute-intensive portions of traditional k- means
can be off-loaded from the host to the device to improve
performance. More precisely, data objects assignment and
k centroids recalculation executed many times, but
independently on different data, can be isolated into two
functions consisted of massive

threads, parallel executing on the device. Actually,
each function is compiled to the instruction set of the device
and the target program, called a kernel, is downloaded to the
device.

GPU-based k-means has three fundamental issues to be
addressed, though the SIMD processors are accomplished in
parallel computing. First, flow control and data caching of
the device are weak for its more transistors are devoted to
compute unit. Second, compared with the data transfer rate
between the CPU and CPU’s cache, the data transfer rate
between GPU and GPU’s memory (global memory) is much
slower, then only appropriate size of block and grid is
capable of winning device’s power. In the end, the transfer
time between the CPU’s memory and GPU’s memory is
extra cost relative to traditional k-means on CPU.
Performance enhancement can be obtained, as long as duty
assignment for the host and the device, data storage, and
parallel computing mode are reasonably designed and
implemented.

In task assignment, the host is responsible for
placing k objects into the space represented by the objects
that are being clustered and rearranging all data objects and
controlling iteration process, while the device for data-
parallel intensive computing. In data storage, all data
objects and centriods are stored as dynamic arrays on the
device. We put all parameters in global memory as both
other constant memory and texture memory are read-only
and respective, which are insufficient to data. Another
remarkable point is that the bandwidth between the
device and the device memory is much higher than the
bandwidth between the device memory and the host
memory. In our approach, the cluster labels transfer
between the host and the device is very small. In parallel
computing mode, kernel is assigned enough computing
routine and massive threads may reduce the global memory
latency. This frame of GPU- based k-means is designed
by the architectures of CPUs and GPUs, which is adapted
to not only CUDA.

Fig 1. Frame GPU k-means

III. GPGPU TECHNOLOGY

GPU’s are probably today most powerfull
computational hardware for the dollar. The rapid increase
in the performance of graphics hardware, coupled with
recent improvement in its programmability, have made
graphics hardware a compelling platform for
computationaly demanding task in wide variety of
application domains. Alot of researches have been
presented in recent years for general-purpose computing,
an effort known collectively as GPGPU [11].

The performance of the GPU in computing general-
purpose algorithms depends heavily on how the algorithms
are arranged so as to exploit the parallel data processing
power of the GPU. In our study, we have used Nvidia’s
GeForce GTX 650. In graphics processing, the GPU

3

receives commands for display in the form of vertices and
connectivity details from the CPU. Today’s GPUs have
very high memory bandwidth and parallel internal
processors, which are capable to process streams of
incoming data. These processing is performed in either the
vertex or the fragment processor in the GPU using specific
shader programs [12]. Computations in the GPU
processors are data independent, which means that the
processing that occurs in each processor, is independent of
the data used by other processors. Currently, there is lot of
research focus in the arena of implementing general-
purpose computations in the GPU (GPGPU) to leverage on
speed w.r.t unit cost function. Within the GPU, the
fragment processors support parallel texture operations and
are able to process floating-point vectors. Implementations
of GPGPU are challenging and mostly utilize the texture
processing abilities of the fragment processor of the GPU.

Fig 2. Arsitektur GTX 650

IV. CUDA TECHNOLOGY

To be able to maintain and take advantage of the gpu
which is general purpose computation, there are some kind
interfaces involves Open Computing Language(Open CL),
Direct Compute, and also CUDA. All those interfaces
have same characteristic although in the other side it has
different programming interfaces. Open CL introduces by
the Khronos Group which is a parallel programming used
in CPU, GPU, Digital Signal Processors (DSP), and some
other processor’s types [1 1] . Direct Compute is an API
which is standart GPU computing platform for windows,
namely Windows 7 and Windows Vista, it means this API
can not be used in different platform, limited library,
examples, and bindings [11]. While CUDA introduces by
NVIDIA as a new parallel programming model, namely
the general purpose parallel computing architecture for
NVIDIA’s graphic cards or GPU [12] [13]. Refers to
Jayshree et.al, CUDA is better than Open CL and Direct
Compute based on some considerations involve a
flexibility on various platforms, availability of documentation
and examples, fully supported by NVIDIA, an availability
inbuilt libraries, debugging with advanced tools, support the
existing construct of C/ C++ [14].

Moreover, CUDA programming model supports merging
operations execution on the CPU and GPU. CUDA consists
of both hardware and a software model allowing the
execution of computations on modern NVIDIA GPUs in a
data-parallel model.

Fig 3. CUDA Architecture

“NVIDIA CUDA is a SDK (Software Development Kit)
released by graphic hardware manufacture NVIDIA with the
purpose of making it possible for programmers to accelerate
general-purpose computations by using the computational
resources available to modern GPUs”. CUDA programming is
an interface to be able to access the GPU parallel computing
capabilities by writing code that runs directly on the device.
In term of CUDA, the GPU is called device, whereas the CPU
is called host. The CUDA architecture is shown in Figure 3
which comprises from several parts [23]. A number of
optimized libraries for CUDA provided by NVIDIA, such
as FFT, Blas, math.h, and so on. The main think of CUDA
architecture is NVIDIA C compiler (NVCC). As mentioned
earlier that the CUDA program is a mix code of GPU and CPU
which is isolated the code of GPU and CPU by NVCC
compiler. CPU will compile the CPU code. And for the GPU
code, it is compiled into GPU's computing assembly code-PTX.
GPU code that runs is supported by the CUDA driver.

The emerging of CUDA as a programming model is an
extension of the C language written especially for the
NVIDIA graphic card. In the GPGPU environment, the
basic programming language used was on C or C++ based [15].
In the other hand, object oriented programming model are
widely increase, it is natural to explore how CUDA-like
capabilities can be made accessible to those programmers as
well.

V. EXPERIMENTAL RESULT

In the experimental result, it is applying parallel
kmeans on datasets. The experiment is implement on Intel
Dual Core with NVIDIA GTX 650 and with 2GB main
memory.

Table 1. Execution Time of Sequensial K-means CPU
Data
(N)

Waktu Eksekusi (seconds)
Uji Coba Rata-

rata1 2 3 4 5

10 0.016 0.062 0.016 0.047 0.047 0.0376

100 0.025 0.031 0.016 0.125 0.094 0.0582

1,000 0.296 0.031 0.094 0.047 0.031 0.0998

10,000 0.484 0.499 0.156 0.296 0.156 0.3182

100,000 1.763 1.404 1.451 1.591 1.482 1.5382

4

Table 2. Execution Time of Paralel K-means GPU
Data
(N)

Waktu Eksekusi (seconds)
Uji Coba Rata-

rata1 2 3 4 5

10 0.016 0.062 0.016 0.047 0.047 0.0376

100 0.025 0.031 0.016 0.125 0.094 0.0582

1,000 0.296 0.031 0.094 0.047 0.031 0.0998

10,000 0.484 0.499 0.156 0.296 0.156 0.3182

100,000 1.763 1.404 1.451 1.591 1.482 1.5382

VI. CONCLUSION

In the paper, the concepts K-Means algorithm were
discussed. Proposed framework of the parallel K-Means
algorithm has been done within GPGPU technology. It is
done on the GPU card that provided by NVIDIA, by
using CUDA platform as a programming model. From
the generated result, this framework is able to accelerate
the execution time by parallelizing. The volume of the
data to be computed effect on response time.

VII. REFERENCES

[1] J.-S. Chen, R. K. H. Ching, and Y.-S. Lin, "An extended
study of the K-means algorithm for data clustering and its
applications," Journal of the Operational Research
Society, vol. Volume 55, 2004.

[2] B. Santosa, Data Mining Teknik Pemanfaatan Data untuk
Keperluan Bisnis. Yogyakarta : Graha Ilmu, 2007.

[3] J. B. Macqueen, "Some Methods For Classification And
Analysis of Multivariate Observations," In Proceedings
of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[4] Y. Agusta, "K-Means - Penerapan Permasalahan dan
Metode Terkait," Jurnal Sistem dan Informatika , vol. 3,
pp. 47-60, 2007.

[5] J. O. Ong, "Implementasi Algoritma K-Means Clustering
Untuk Menentukan Startegi Marketing President
University," Jurnal Ilmiah Teknik Industri, vol. 12, pp.
10-20, Jun. 2013.

[6] N. F. Hastuti, R. Saptono, and E. Suryani, "Pemanfaatan
Metode K-Means Clustering Dalam Penentuan Penerima
Beasiswa," 2013.

[7] M. Umran and T. F. Abidin, "Pengelompokkan Dokumen
Menggunakan K-Means Dan Singular Value
Decomposition : Studi Kasus Menggunakan Data Blog,"
SeSINDO, 2009.

[8] A. Unknown, I. Unknown, and F. Unknown, "Identifikasi
Dengan Menggunakan Algoritma K Means Pada Plat
Kendaraan," Journal Poli Rekayasa, vol. 6, 2010.

[9] K. Arai and A. R. Barakbah, "Hierarchical K-means: an
algorithm for centroids initialization for K-means,"
Reports of the Faculty of Science and Engineering, 2007.

[10] P. Pacheco, An Introduction to Parallel Programming,
1st ed. Morgan Kaufmann, 2011.

[11] M. Zechner and M. Granitzer, "Accelerating K-Means on

the Graphics Processor via CUDA," in Intensive
Applications and Services, 2009. INTENSIVE '09. First
International Conference on, Valencia, 2009, pp. 7-15.

[12] R. Xu and D. Wunsch, Clustering (IEEE Press Series on
Computational Intelligence). Wiley-IEEE Press, 2008.

[13] E. Wu and Y. Liu, "Emerging technology about
GPGPU," in APCCAS 2008. IEEE Asia Pacific
Conference on, Macao, 2008, pp. 618-622.

[14] A. J. van der Steen and J. Donggara, Overview of High
Performance Computers. Kluwer Academic Publishers,
2001.

[15] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to
Data Mining. 2006.

[16] J. B. Srivastava, R. K. Pandey, and J. Jain,
"Implementation of Digital Signal Processing Algorithm
in General Purpose Graphics Processing Unit (GPGPU),"
International Journal of Innovative Research in
Computer and Communication Engineering, vol. 1, no. 4,
Jun. 2013.

[17] J. Sirotkovic, H. Dujmic, and V. Papic, "K-Means Image
Segmentation on Massively Parallel GPU Architecture,"
MIPRO, 2012.

[18] J. Sanders and E. Kandrot, CUDA by Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 2010.

[19] M. Sadaaki and Y. Nakayama, "Algorithms of Hard C-
Means Clustering UsingKernel Functions in Support
Vector Machines," Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. Vol. 7, p.
19–24, 2003.

[20] R. A. S. Putri and A. Suhendra, "Analisis Perbandingan
Komputasi Sekuensial dan Komputasi Paralel GPU
Memanfaatkan Teknologi NVIDIA Cuda Pada Aplikasi
Pengurutan Bilangan Acak Menggunakan Algoritma
QuickSort," E-Journal Teknologi Industri, 2012.

[21] S. Páll, B. Hess, and E. Lindahl, "Poster: 3D tixels: a
highly efficient algorithm for gpu/cpu-acceleration of
molecular dynamics on heterogeneous parallel
architectures," in Proceedings of the 2011 companion on
High Performance Computing Networking, Storage and
Analysis Companion, 2011, pp. 71-72.

[22] D. Padua, Encyclopedia of Parallel Computing. Springer,
2011.

[23] J. D. Owen, et al., "A survey of general-purpose
computation on Graphics Hardware," in Proceedings of
Eurographics 2005, 2005, pp. 21-51.

[24] NVIDIA. Developer NVIDIA Zone. [Online].
https://developer.nvidia.com/what-cuda

[25] A. Mahardito, A. Suhendra, and D. T. Hasta, "Optimizing
Parallel Reduction In Cuda To Reach GPU Peak
Performance," Published Article Komputer, 2010.

[26] J. Krüger and R. Westermann, "Linear Algebra Operators
for GPU Implementation of Numerical Algorithms," in
ACM Transactions on Graphics (TOG) - Proceedings of
ACM SIGGRAPH 2003, 2003, pp. 908-916.

5

[27] D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach (Applications
of GPU Computing Series). Morgan Kaufmann, 2010.

[28] T. Kim, S. Song, D. Choi, Y. Kwak, and B. Goo,
"Sequence Data Indexing Method Exploiting the Parallel
Processing Resources of GPGPU," in The 3rd
International Conference on Circuits, Control,
Communication,, 2013.

[29] A. Januarianto and A. Suhendra, "Analisis Perbandingan
Komputasi Sekuensial dan Komputasi Paralel GPU
Memanfaatkan Teknologi NVIDIA CUDA Pada Aplikasi
Kompresi Citra Menggunakan Algoritma DCT 8X8," E-
Journal Teknologi Industri, 2012.

[30] S. A. Horup, S. A. Juul, and H. H. Larsen, The Art
GPGPU. 2011.

[31] J. Han and M. Kamber, Data Mining Concepts and
Techniques 2nd Edition. San Francisco: Morgan
Kaufmann, 2007.

[32] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D.
Manocha, "Fast computation of database operations using
graphics processors," in SIGGRAPH '05 ACM
SIGGRAPH 2005 Courses, 2005.

[33] f. Gebali, Algorithms and Parallel Computing. Wiley,
2011.

[34] R. Farber, CUDA Application Design and Development.
Morgan Kaufmann, 2011.

[35] J. Fang, A. L. Varbanescu, and H. Sips, "A
Comprehensive Performance Comparison of CUDA and
OpenCL," in Parallel Processing (ICPP), 2011
International Conference on, 2011, pp. 216-225.

[36] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover,
"GPU Cluster for High Performance Computing," in
Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, 2004, p. 47.

[37] S. Cook, CUDA Programming: A Developer's Guide to
Parallel Computing with GPUs (Applications of GPU
Computing Series). Morgan Kaufmann, 2012.

[38] D. Pettinger and G. Di Fatta, "Scalability of Efficient
Parallel K-Means," in E-Science Workshops, 2009 5th
IEEE International Conference on, Oxford, 2009, pp. 96-
101.

[39] K. Rupp, F. Rudolf, and J. Weinbub, "ViennaCL - A
High Level Linear Algebra Library for GPUs and Multi-
Core CPUs," in Proceedings of GPUScA, 2010, pp. 51-
56.

