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Abstract— A human visual system can hardly respond to 

small differences in image signals. A full colour image 

carries a certain amount of perceptual redundancy for the 

human eyes. The sensitivity human eye of the color image 

can be measured by a psychovisual threshold. The 

sensitivity of the human eye is useful for perceptual visual 

image in image compression. The quantization tables are 

obtained to determine psychovisual threshold that can be 

perceived visually significant by the human eye. This paper 

introduces the concept of psychovisual threshold into 

Tchebichef moment image compression. This paper will 

investigate the contribution of each moment coefficient to 

the image reconstruction. The error threshold from the 

contribution of its moments in image reconstruction will be 

the primitive of psychovisual threshold to an image. This 

paper presents a new technique to generate quantization 

table for an optimal TMT image compression based on 

psychovisual error threshold. The experimental results show 

that these new finer quantization tables provide a 

statistically better image quality output at lower average bit 

length of Huffman's code than previously proposed TMT 

quantization.  

 

Index Terms—TMT quantization, psychovisual threshold, 

TMT image compression  

 

I.  INTRODUCTION 

A human visual system is capable of perceiving 

various intensities of the visual information colour image. 

A human eye perceives a group of image signals as a 

summary and hardly responds to small differences in 

colour image signals. The visual information colour 

images possess a certain amount of perceptual 

redundancy [1]. The human visual system describes the 

way of a human eye’s process on image and how to relay 

it to the brain. By taking the advantages of some human 

eye’s properties, data redundancy of the colour image can 

be removed without seriously degrading the image 

perceptual quality. An image carries the considerable 

amount of perceptual redundancy to the human eye. 

Visual perception is a complex coordination among the 

eye, optical nerve, visual cortex and other part of the 

brain [2]. Human eye does not perceive directly from the 

translation of retina stimuli, but it involves complicated 

psychological inference [3]. The human eye has a non-

linear response toward the drastic changes in intensity 

level and likely to process them in different frequency 

channels [4].  

The psychovisual redundancy is the image information 

that is ignored by the human visual system or relatively 

less important to human eye. In another word, human eye 

is not equally sensitive to all visual image information. 

The psychovisual redundancy results in the fact that 

human eye perception of an image does not really depend 

on specific individual pixels.  

The removal of psychovisual redundancy theoretically 

reduces the less important information in the compressed 

image. In some cases, it is useful to remove the 

redundancy data especially on image compression. The 

psychovisual redundancy can be eliminated in the lossy 

data compression via the quantization process. This 

psychovisual redundancy can be determined by several 

experimental or trial testing on the human visual eye 

perception to the image intensity. However, the result is 

relatively subjective. The objective of this research is to 

develop quantitative measures that can automatically 

predict perceptual image quality [5].  

In general, a psychovisual model has been designed 

based on our understanding of brain theory and 

neuroscience [3], which is used to determine a threshold 

of human visual system’s sensitivity. The psychovisual 

model has not been fully comprehended. A psychovisual 
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threshold can be conducted via quantitative experiment 

by evaluating the image reconstruction [6]-[10]. 

This paper investigates the sensitivity of Tchebichef 

Moment Transform (TMT) basis function in image 

compression. TMT is an efficient transform based on 

discrete Tchebichef polynomials [11]. It uses a simplified 

mathematical framework technique by using matrices. 

TMT is an efficient transform based on discrete 

orthogonal Tchebichef polynomials, which has energy 

compactness properties for certain class image [12].  

TMT has been shown to have better image 

representation capability than the continuous orthogonal 

moments [13]. TMT has been widely used in various 

image processing applications. For examples, they are 

used in image analysis [11], texture segmentation, image 

reconstruction [14], image dithering [15]-[17], and image 

compression [18]-[22]. 

This research proposes a model represented by a 

visual threshold based on Tchebichef moment by 

evaluating the image reconstruction. This paper 

investigates the contribution moment coefficient for each 

moment order based on error reconstruction. The 

sensitivity amounts on each moment order give 

significant effect to the image reconstruction. An ideal 

error threshold which gives an optimize performance in 

image reconstruction is represented as a psychovisual 

threshold.  

The organization of this paper is as follows. The next 

section provides a brief description of Tchebichef 

moment transform. Section III presents the experimental 

method in generating psychovisual threshold. The 

experimental results of TMT image compression based 

on the new quantization table from psychovisual 

threshold are presented in Section IV. Lastly, section V 

concludes this paper.  

II.  TCHEBICHEF MOMENT TRANSFORM 

TMT is a two-dimensional transform based on discrete 

orthogonal Tchebichef polynomials. For a given set 

{tn(x)} of input value (image intensity values) of size 

N=8, the forward TMT of order m + n is given as follows 

[11]: 
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for m, n = 0, 1, 2, ..., N-1.  

where f (x, y) denotes the intensity value at the pixel 

position (x, y) in the image. The tn(x) are defined using 

the following recursive relation: 
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for n = 2, 3, ..., N-1. The first four discrete orthogonal 

Tchebichef moment transform is shown in Figure 1. 

 

The recursive relation tn(x) of 8×8 orthogonal Tchebichef 

polynomials are shown in Table I. 

 
The above definition uses the following scale factor for 

the polynomial of degree n.  

nNNn =),(β                 (5) 

The set {tn(x)} has a squared-norm given by 
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TABLE I  
THE RECURSIVE RELATION OF 8×8 ORTHOGONAL TCHEBICHEF 

POLYNOMIALS 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-0.875 -0.625 -0.375 -0.125 0.125 0.375 0.625 0.875 

0.656 0.093 -0.281 -0.468 -0.468 -0.281 0.093 0.656 

-0.410 0.293 0.410 0.175 -0.175 -0.410 -0.293 0.410 

0.205 -0.380 -0.087 0.263 0.263 -0.087 -0.380 0.205 

-0.076 0.252 -0.186 -0.164 0.164 0.186 -0.252 0.076 

0.019 -0.096 0.173 -0.096 -0.096 0.173 -0.096 0.019 

-0.002 0.016 -0.050 0.084 -0.084 0.050 -0.016 0.002 

 

 

Figure 1. The discrete orthogonal Tchebichef moments tn(x) for n=0, 1, 

2 and 3. 
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The description of squared-norm ρ(·) and the properties 

of orthogonal Tchebichef polynomials are given in [11]. 

The values of ρ(n, N) for every n=0, 1, ..., N-1 where N=8 

is shown in Table II. 

 

The process of image reconstruction from its moments, 

the inverse TMT is given as follows:  
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where M denotes the maximum order of moments being 

used and ),(
~

yxf  denote the reconstructed intensity 

distribution. Image reconstruction provides a measure of 

the feature representation capability of the moment 

functions. Tchebichef moment transform has its own 

advantage in image processing, which has not been fully 

explored. The discrete orthogonal Tchebichef polynomial 

domain consists of real rational numbers unlike the 

continuous orthogonal transforms. Discrete orthogonal 

Tchebichef moment is capable of performing image 

reconstruction exactly without any numerical errors [22]. 

The TMT involves only algebraic expressions and it can 

be computed easily using a set recurrence relation (1)-(6).   

An image contains low, medium and high-frequency 

components. The low-frequency signal corresponds to 

slowly varying color, whereas the high-frequency 

represents the finer detail within the image information. 

Intuitively, low frequencies are more important to create 

a good representation of an image and the higher 

frequencies can largely be ignored in most instances. The 

human eye is highly sensitive to low frequency's 

distortions rather than to high frequencies. 

III.  AN EXPERIMENTAL METHOD 

In this quantitative experiment, 80 images (24-bit RGB 

with 512×512 pixels) are chosen to be tested and 

analyzed while incrementing the frequency coefficients. 

The images are classified into 40 real images and 40 

graphical images respectively. The RGB image is 

separated into a luminance (Y) and two chrominance (U 

and V). The images are divided into the 8×8 size blocks 

and each block of the image data is transformed by a two-

dimensional TMT. This experiment can be done by 

investigating the effect of incrementing moment 

coefficient one at a time for each moment order. Based on 

the discrete orthogonal moments above (2)-(6), a compact 

representation of the moment coefficient K(8×8) is given as 

follows: 
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The kernel matrix values K(8×8) of orthogonal Tchebichef 

polynomials are shown in Table III. 

 
 

The image block matrix by F(8×8) with f (x, y) denotes the 

intensity value of the image pixels for each colour 

component: 
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The visual representation of the matrix is given in Figure 

2. 

 

        

                      

      

                 
 

Figure 2. Visual representation of the block matrices. 

 

TABLE III 
THE KERNEL MATRIX VALUE OF 8×8 ORTHOGONAL TCHEBICHEF 

POLYNOMIALS 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

-0.333 -0.238 -0.142 -0.047 0.047 0.142 0.238 0.333 

0.444 0.063 -0.190 -0.317 -0.317 -0.190 0.063 0.444 

-0.452 0.323 0.452 0.193 -0.193 -0.452 -0.323 0.452 

0.387 -0.720 -0.166 0.498 0.498 -0.166 -0.720 0.387 

-0.291 0.958 -0.708 -0.625 0.625 0.708 -0.958 0.291 

0.197 -0.985 1.773 -0.985 -0.985 1.773 -0.985 0.197 

-0.121 0.848 -2.546 4.243 -4.243 2.546 -0.848 0.121 

 

TABLE II  
THE SQUARED-NORM OF THE SCALED TCHEBICHEF POLYNOMIALS FOR 

N=8 

n ρ(n, N) 

0 8.0000 

1 2.6250 

2 1.4766 

3 0.9064 

4 0.5287 

5 0.2636 

6 0.0976 

7 0.0198 

Moment 

Coefficients  

Moment 

Function  
Moment 

Inverse  

YUV 

Image 

RGB 

Image  

704 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



The matrix T(S×S) of moments is defined using S=8 in 

above as follows: 

)88()88()88()88( ×××× = KFKT T          (10) 

This process is repeated for every block in the original 

image to generate moment coefficients of discrete 

orthogonal TMT. The inverse moment relation used to 

reconstruct the image block from the above moments and 

is as follows: 

TKTKG )88()88()88()88( ×××× =           (11) 

where G(8×8) denotes the matrix image of the 

reconstructed intensity value. This process is repeated for 

every 8×8 block of an image. The use of moments for 

image analysis is to characterize an image segment and to 

extract properties that have analogies in statistics and 

mechanics. Each 8×8 block image is arranged in a linear 

order. The implementation of moment order by M(S×S) 

where S=8 for TMT is as provided below: 
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The order zero m(0,0) on the moment coefficient represents 

the average intensity of an image. The first orders on 

moment coefficients are represented by m(1,0) and m(0,1) 

coordinates. The second orders of moment coefficients 

are located by (m(2,0), m(1,1) and m(0,2)) coordinates and so 

on. Moment coefficients are incremented up to a 

maximum of quantization tables for each moment order. 

The TMT quantization tables [22] are used as a reference 

for a maximum of increment moment coefficients. The 

quantization tables for luminance QML and chrominance  

QMR on TMT has been originally proposed as follows:  
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(13)  

The quantization tables are the crucial elements that have 

significant effect to the quantity of the moment 

coefficients. The quantization value is used to determine 

the amount of moment coefficients to represent the visual 

image, which has the HVS visibility tolerance to the 

visual quality image. The three-dimensional visualization 

of TMT quantization table for luminance and 

chrominance are shown in Figure 3 and Figure 4.  

 

Recently, these tables have performed well on TMT 

image compression [22] in providing higher compression 

quality at lower average bit length of Huffman's code. 

These quantization tables can still be redesigned based on 

human visual sensitivity by optimizing the visual quality 

of the reconstructed image on a given bit rate. Human eye 

is more sensitive to low frequency distortions rather than 

to high-frequency ones. This human visual sensitivity can 

be technically represented by a psychovisual threshold. 

IV.  EXPERIMENTAL RESULTS 

In order to reduce the quantity of the moment 

coefficient which has irrelevant image information to 

represent the visual quality image, the contribution of the 

moment coefficients to the image reconstruction shall be 

investigated. The moment coefficients are incremented 

one at a time for each moment order to analyze the effect 

to the visual quality image reconstruction. The sensitivity 

of TMT basis function is investigated to measure an 

optimal image representation. The TMT coefficients are 

incremented up to value from the original TMT 

quantization table [22]. The experiment can be conducted 

by calculating the quality image reconstruction score 

from the effect of an increment moment coefficients one 

 

Figure 4. Three-dimensional visualization of TMT quantization table 

for chrominance 

 

Figure 3. Three-dimensional visualization of TMT quantization table 

for luminance 
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by one. The effect of an increment in TMT coefficient is 

calculated and analyzed to get psychovisual threshold on 

the output image. This approach is used to generate 

quantization tables for TMT image compression. The 

average reconstruction error of an increment moment 

coefficient on luminance (Y) and Chrominance (U) for 40 

real images are shown in Figure 5 and Figure 6.  

 

 
 

 
 

The x-axis represents the moment order and y-axis 

represents error reconstruction. This quantitative 

experiment investigates the effect of an increment on 

TMT coefficients.  The effect of an incremented moment 

coefficient is calculated by image reconstruction error 

measurement. The average full error score on 40 real 

colour images is computed for each frequency order for 

every 8×8 block image. The effect of an increment up to 

maximum value of the previous TMT quantization table 

for a given order zero to the order fourteen has been 

visualized as a curve. The blue curve represents image 

reconstruction error based on the maximum quantization 

value. In order to produce a psychovisual threshold, the 

new average designed reconstruction error is to get a 

smoothed curve which results in an ideal curve of average 

error scores. An ideal psychovisual threshold for 

luminance and chrominance is depicted as the red curve. 

The smooth curve of the reconstruction error is then 

interpolated by a simple polynomial that represents a 

psychovisual threshold of the image. Concerning Figure 5 

and Figure 6, the authors propose a psychovisual 

threshold for TMT basis function for luminance fML and 

chrominance fMR of quantization table, which are defined 

as follows: 

4737.06352.04354.0 
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(15) 

for x=0, 1, 2, ..., 14 and x represents the moment order. 

According to equation above, these functions can be used 

to generate new quantization tables for luminance and 

chrominance respectively as follows: 
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(16) 

The two-dimensional visualization of a new TMT 

quantization table is depicted in Figure 7 and Figure 8. 

 

 

Figure 7. Two-dimensional visualization of TMT quantization table for 

luminance. 

Figure 5. The average reconstruction error of an increment on TMT 

coefficient for 40 real images on luminance. 

 

Figure 6. The average reconstruction error of an increment on TMT 

coefficient for 40 real images on chrominance. 
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where a blue curve represents the original TMT 

quantization table [22], and a red curve represents a new 

quantization table from a psychovisual threshold. Based 

on the principles of psychoacoustics, it can be stressed 

that human receptor is more sensitive to changes in (low 

order frequency) sound such as a whisper. This 

psychovisual model considers on the human eye which is 

more sensitive to any changes at the low-frequency signal 

than at high-frequency signals. 

These new quantization tables will be implemented in 

TMT image compression to measure the performance of 

the newly proposed psychovisual threshold. Each element 

of the moment coefficient is divided by the corresponding 

elements in an 8×8 quantization table and rounding the 

results. After the transformation and quantization of an 

8×8 image sub-block are over, the DC coefficient is 

separated from the AC coefficients. Next, run length 

encoding is used to reduce the size of a repeating 

coefficient value in the sequence of a set of AC 

coefficients. 

The coefficient value can be represented compactly by 

simply indicating the coefficient value and the length of 

its run wherever it appears. The output of run length 

coding represents TMT moments as symbols and the 

length of occurrence of the symbols. The symbols and 

variable length of occurrence are used in Huffman coding 

to retrieve code words and their length of code words. 

Huffman coding is a coding technique to produce the 

shortest possible average code length of the source 

symbol set and the probability of occurrence of the 

symbols [23]. Using these probability values, a set of 

Huffman's code of the symbols can be generated from a 

Huffman Tree. Next, the average bit length score is 

calculated to find the average bit length of DC and AC 

coefficients. The average bit length of DC produces same 

value because the quantization table value for DC 

coefficient is not changed. The average bit length of 

Huffman's code based on the TMT quantization table [22] 

and the proposed new quantization generations from 

psychovisual threshold for TMT basis function are shown 

in Table IV.  

 
In order to measure the quality of the reconstructed 

image, the Full Error is used and calculated to analyze 

image reconstruction error. The image reconstruction 

error shall be calculated by obtaining the differences 

between reconstruction image g(i, j, k) and original image 

f(i, j, k). The image reconstruction error can be defined as 

follows: 
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where the original image size is M×N and the third index 

refers to the value of three colors of RGB channels. The 

MSE calculates the average to the square error [24] which 

defined as follows:  
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The next measurement is Peak Signal to Noise Ratio 

(PSNR). The PSNR [25] is defined as follows: 

2

10 10
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The quality of image reconstruction based on the new 

quantization table for TMT image compression is shown 

in Table V.  

 
Another measurement quality image is Structural 

Similarity index (SSIM), which is a method to measure 

Figure 8. Two-dimensional visualization of TMT quantization table for 

chrominance. 

TABLE V 
THE IMAGE RECONSTRUCTION ERROR SCORE OF TMT IMAGE 

COMPRESSION FOR 40 REAL IMAGES AND 40 GRAPHICAL IMAGES 

Image Measurement 

TMT Quantization 

Table  

Psychovisual 

Threshold 

40 Real 

Images 

40 

Graphical 

Images 

40 Real 

Images 

40 

Graphical 

Images 

Full Error 5.2584 4.71429 5.2456 4.6034 

MSE 58.1587 68.20336 57.4476 62.5664 

PSNR 31.3721 31.4483 31.3790 31.6477 

SSIM 0.9471 0.9601 0.9462 0.9600 

 

TABLE IV 
AVERAGE BIT LENGTH OF HUFFMAN CODE OF TMT IMAGE 

COMPRESSION FOR 40 REAL IMAGES AND 40 GRAPHICAL IMAGES 

Average bit length of 

Huffman Code 

TMT quantization 

tables  

Psychovisual 

Threshold  

40 Real 

Images 

40 

Graphical 

Images 

40 Real 

Images 

40 

Graphical 

Images 

DC Luminance Y 4.7660 4.9000 4.7660 4.9000 

DC Chrominance U 2.0237 3.2357 2.0237 3.2357 

AC Luminance Y 1.7679 2.3588 1.7642 2.3554 

AC Chrominance U 1.2124 2.0027 1.1665 1.7544 
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the similarity between original image and compressed 

image. The SSIM is defined as follows: 

γβα )],([)],([)],([),( yxsyxcyxlyxSSIM ⋅⋅=       (20) 

where α > 0, β > 0, γ > 0, are parameters to adjust the 

relative importance of the three components. The detail 

description is given in [26].  

A quantitative experiment of psychovisual threshold 

for 40 real and 40 graphical images have been done. In 

this experiment, the right eye of the baboon image and 

Lena image are evaluated as presented on the left of 

Figure 9 and Figure 11.  

 

 

 

 

 
In order to observe the visual quality of the image 

compression results, the image reconstruction is zoomed 

in to 400% as shown on the right of Figure 9 and Figure 

11. The experimental results of image compression using 

new quantization tables based on psychovisual threshold 

are shown on the right of Figure 10 and Figure 12. The 

new quantization tables based on psychovisual threshold 

produces better quality image output than previously 

proposed TMT quantization tables [22] for TMT image 

compression.  

The observation as presented on the right of Figure 10 

point out the fact that the new quantization tables based 

on psychovisual threshold produce almost the same as the 

original image on the right of Figure 9. In addition, the 

image output produces smooth texture. The experimental 

results show that the new TMT quantization tables based 

on psychovisual threshold produces a lower average bit 

length of Huffman's code as shown in Table IV than the 

earlier TMT image compression for both real and 

graphical images.  

Refer to Figure 12, the new quantization table on TMT 

image compression produces brighter pupil on Lena right 

eye than the previously proposed default TMT 

quantization table [22]. The TMT image compression 

using a new quantization table as shown on the right of 

Figure 12 shows better visual quality image output than 

the earlier TMT image compression. The image output 

from TMT image compression using a new quantization 

table in is closer towards the original Lena image as on 

the right of Figure 11. 

Image compression using psychovisual threshold 

produce a better-quality reconstruction image as shown in 

Table V than previous TMT image compression [22]. It 

has been observed from the experiment, the 

reconstruction error from TMT basis function is relatively 

equally distributed among the orders of image signals. 

The new technique on quantization table generation based 

on psychovisual threshold produces higher quality on 

image reconstruction at lower average bit length of 

Huffman's code in the compressed image. 

V.  CONCLUSIONS 

The psychovisual threshold represents the human 

visual system’s sensitivity to the image intensity in terms 

of image compression. These threshold functions 

represent the contribution of the moment coefficients to 

reconstruct the image. The level of contribution of each 

frequency coefficient to the reconstruction error will be a 

primitive pyschovisual error. Psychovisual threshold is 

used to determine the amount of moment coefficients to 

represent the visual details of image information. A 

psychovisual threshold can provide an optimal compact 

image representation at the least quantity of moments. 

The psychovisual threshold appears as the value of the 

quantization table to assign the frequency coefficient 

value of each moment order. This paper proposes a new 

technique to generate quantization tables based on 

psychovisual error threshold for TMT image 

compression. The new TMT quantization tables based on 

psychovisual threshold produces better quality image 

reconstruction at lower average bit length of Huffman's 

code of the image compression. 

    

Figure 9. Original colour baboon image (left) and zoomed in to 400% 

(right). 

    

Figure 10. The comparison between TMT quantization table (left) and 

psychovisual threshold quantization table for TMT (right) zoomed in to 

400%. 

    

Figure 11. Original colour lena image (left) and zoomed in to 400% 

(right). 

    

Figure 12. The comparison between TMT quantization table (left) and 

psychovisual threshold quantization table for TMT (right) zoomed in to 

400%. 
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