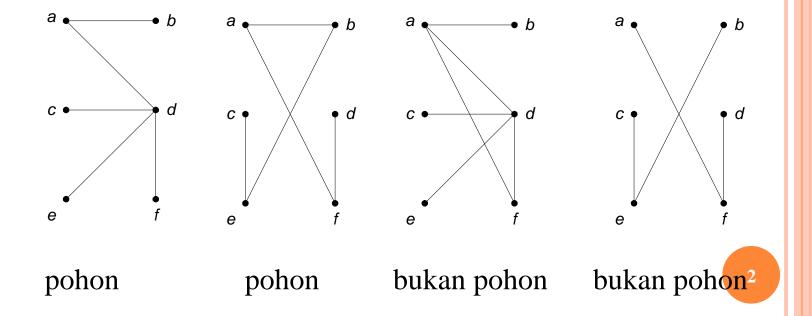
POHON

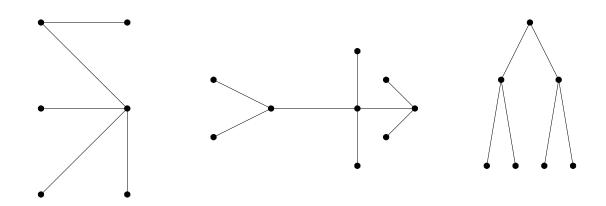
DEFINISI

 Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit



Hutan (forest) adalah

- kumpulan pohon yang saling lepas, atau
- graf tidak terhubung yang tidak mengandung sirkuit. Setiap komponen di dalam graf terhubung tersebut adalah pohon.



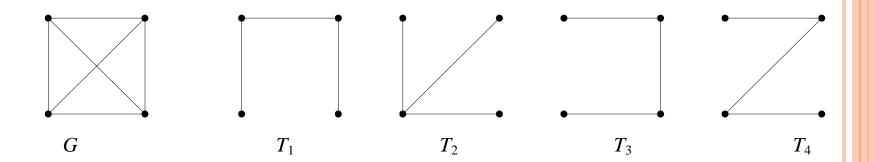
Hutan yang terdiri dari tiga buah pohon

SIFAT-SIFAT (PROPERTI) POHON

- **Teorema.** Misalkan G = (V, E) adalah graf tak-berarah sederhana dan jumlah simpulnya n. Maka, semua pernyataan di bawah ini adalah ekivalen:
 - 1. *G* adalah pohon.
 - 2. Setiap pasang simpul di dalam *G* terhubung dengan lintasan tunggal.
 - 3. *G* terhubung dan memiliki m = n 1 buah sisi.
 - 4. G tidak mengandung sirkuit dan memiliki m = n 1 buah sisi.
 - 5. *G* tidak mengandung sirkuit dan penambahan satu sisi pada graf akan membuat hanya satu sirkuit.
 - 6. G terhubung dan semua sisinya adalah jembatan.

POHON MERENTANG (SPANNING TREE)

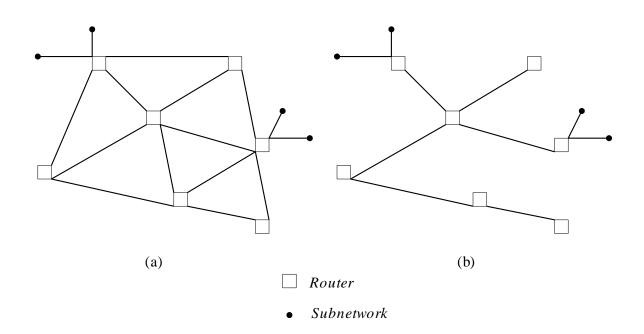
- Pohon merentang dari graf terhubung adalah upagraf merentang yang berupa pohon.
- Pohon merentang diperoleh dengan memutus sirkuit di dalam graf.



- Setiap graf terhubung mempunyai paling sedikit satu buah pohon merentang.
- Graf tak-terhubung dengan k komponen mempunyai k buah hutan merentang yang disebut hutan merentang (spanning forest).

APLIKASI POHON MERENTANG

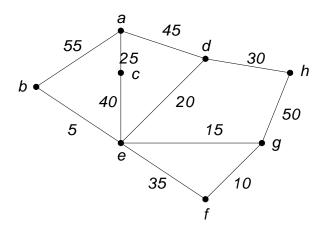
- 1. Jumlah ruas jalan seminimum mungkin yang menghubungkan semua kota sehingga setiap kota tetap terhubung satu sama lain.
- 2. Perutean (routing) pesan pada jaringan komputer.

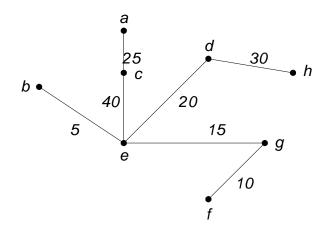


(a) Jaringan komputer, (b) Pohon merentang multicast

POHON MERENTANG MINIMUM

- Graf terhubung-berbobot mungkin mempunyai lebih dari 1 pohon merentang.
- Pohon merentang yang berbobot minimum —dinamakan **pohon** merentang minimum (minimum spanning tree).





Algoritma Prim

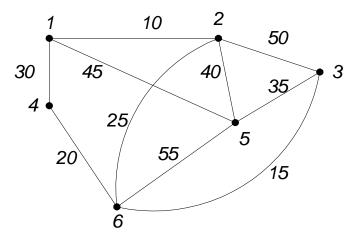
Langkah 1: ambil sisi dari graf G yang berbobot minimum, masukkan ke dalam T.

Langkah 2: pilih sisi (u, v) yang mempunyai bobot minimum dan bersisian dengan simpul di T, tetapi (u, v) tidak membentuk sirkuit di T. Masukkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak n-2 kali.

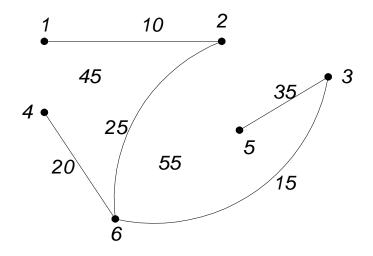
```
procedure Prim(input G : graf, output T : pohon)
{ Membentuk pohon merentang minimum T dari graf terhubung-
berbobot G.
Masukan: graf-berbobot terhubung G = (V, E), dengan /V/= n
Keluaran: pohon rentang minimum T = (V, E')
Deklarasi
  i, p, q, u, v : integer
Algoritma
  Cari sisi (p,q) dari E yang berbobot terkecil
  T \leftarrow \{(p,q)\}
  for i\leftarrow 1 to n-2 do
    Pilih sisi (u,v) dari E yang bobotnya terkecil namun
    bersisian dengan simpul di T
    T \leftarrow T \cup \{(u,v)\}
  endfor
```

Contoh:



Langkah	Sisi	Bobot	Pohon rentang
1	(1, 2)	10	1 10 2
2	(2, 6)	25	1 10 2
3	(3, 6)	15	25 15
4	(4, 6)	20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	(3, 5)	35	1 10 2 45 35 3 4 • 25 5 5

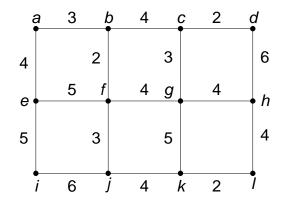
Pohon merentang minimum yang dihasilkan:



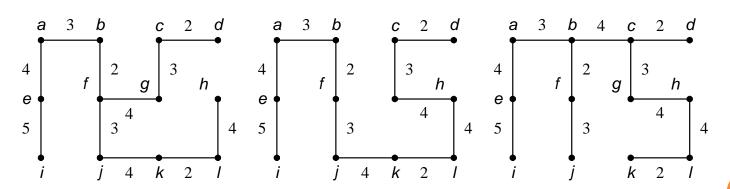
Bobot =
$$10 + 25 + 15 + 20 + 35 = 105$$

- Pohon merentang yang dihasilkan tidak selalu unik meskipun bobotnya tetap sama.
- Hal ini terjadi jika ada beberapa sisi yang akan dipilih berbobot sama.

Contoh:



Tiga buah pohon merentang minimumnya:



Bobotnya sama yaitu = 36

Algoritma Kruskal

(Langkah 0: sisi-sisi dari graf sudah diurut menaik berdasarkan bobotnya – dari bobot kecil ke bobot besar)

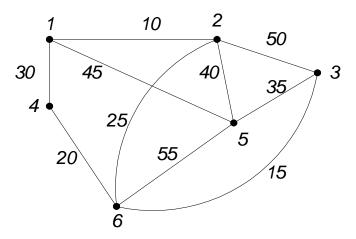
Langkah 1: T masih kosong

Langkah 2: pilih sisi (u, v) dengan bobot minimum yang tidak membentuk sirkuit di T. Tambahkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak n-1 kali.

```
procedure Kruskal(input G : graf, output T : pohon)
{ Membentuk pohon merentang minimum T dari graf terhubung -
berbobot G.
Masukan: graf-berbobot terhubung G = (V, E), dengan /V/= n
Keluaran: pohon rentang minimum T = (V, E')
Deklarasi
  i, p, q, u, v : integer
Algoritma
  ( Asumsi: sisi-sisi dari graf sudah diurut menaik
     berdasarkan bobotnya - dari bobot kecil ke bobot
     besar)
  T \leftarrow \{\}
  while jumlah sisi T < n-1 do
    Pilih sisi (u,v) dari E yang bobotnya terkecil
    if (u,v) tidak membentuk siklus di T then
       T \leftarrow T \cup \{(u,v)\}
    endif
  endfor
```

Contoh:

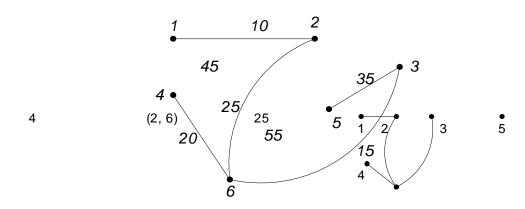


Sisi-sisi diurut menaik:

Sisi	(1,2)	(3,6)	(4,6)	(2,6)	(1,4)	(3,5)	(2,5)	(1,5)	(2,3)	(5,6)
Bobot	10	15	20	25	30	35	40	45	50	55

Langkah	Sisi	Bobot	Hutan merentang
0			• • • • • • 1 2 3 4 5 6
1	(1, 2)	10	1 2
2	(3, 6)	15	1 2 3 4 5 6
3	(4, 6)	20	1 2 3 5
4	(2, 6)	25	3 5

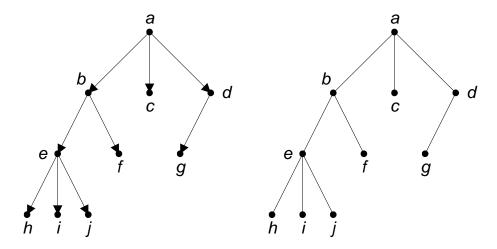
Pohon merentang minimum yang dihasilkan:



Bobot =
$$10 + 25 + 15 + 20 + 35 = 105$$

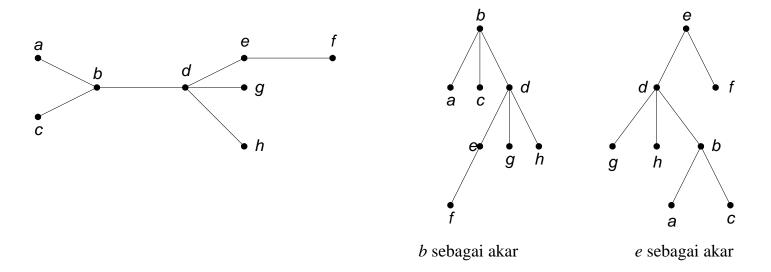
POHON BERAKAR (ROOTED TREE)

• Pohon yang satu buah simpulnya diperlakukan sebagai akar dan sisi-sisinya diberi arah sehingga menjadi graf berarah dinamakan **pohon berakar** (*rooted tree*).



(a) Pohon berakar

(b) sebagai perjanjian, tanda panah pada sisi dapat dibuang

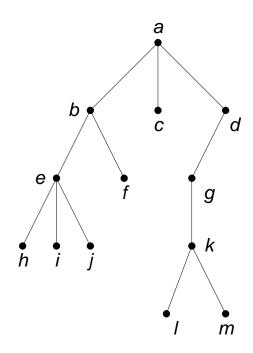


Pohon dan dua buah pohon berakar yang dihasilkan dari pemilihan dua simpul berbeda sebagai akar

TERMINOLOGI PADA POHON BERAKAR

Anak (child atau children) dan Orangtua (parent)

b, c, dan d adalah anak-anak simpul a, a adalah orangtua dari anak-anak itu



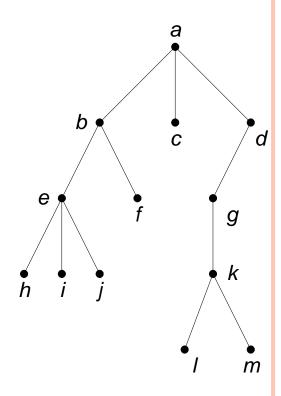
2. Lintasan (path)

Lintasan dari *a* ke *j* adalah *a*, *b*, *e*, *j*.

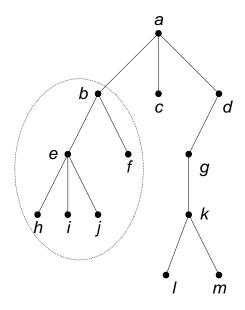
Panjang lintasan dari *a* ke *j* adalah 3.

3. Saudara kandung (sibling)

f adalah saudara kandung e, tetapi g bukan saudara kandung e, karena orangtua mereka berbeda.



4. Upapohon (subtree)



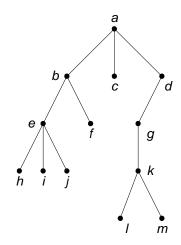
5. Derajat (degree)

Derajat sebuah simpul adalah jumlah upapohon (atau jumlah anak) pada simpul tersebut.

Derajat *a* adalah 3, derajat *b* adalah 2, Derajat *d* adalah satu dan derajat *c* adalah 0.

Jadi, derajat yang dimaksudkan di sini adalah derajat-keluar.

Derajat maksimum dari semua simpul merupakan derajat pohon itu sendiri. Pohon di atas berderajat 3

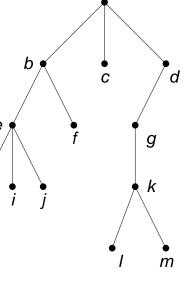


6. Daun (leaf)

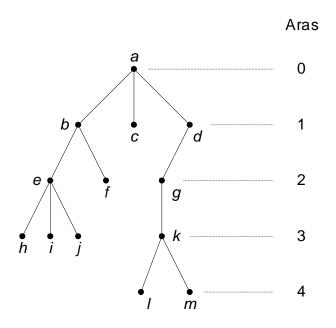
Simpul yang berderajat nol (atau tidak mempunyai anak) disebut **daun**. Simpul h, i, j, f, c, l, dan m adalah daun.

7. Simpul Dalam (internal nodes)

Simpul yang mempunyai anak disebut **simpul dalam**. Simpul b, d, e, g, dan k adalah simpul dalam.



8. Aras (level) atau Tingkat

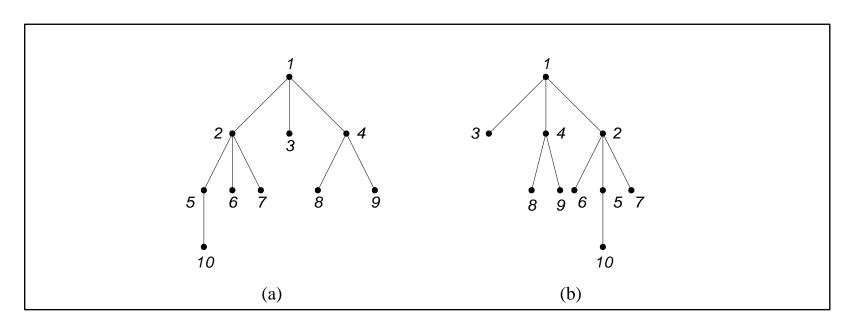


9. Tinggi (height) atau Kedalaman (depth)

Aras maksimum dari suatu pohon disebut **tinggi** atau **kedalaman** pohon tersebut. Pohon di atas mempunyai tinggi 4.

POHON TERURUT (ORDERED TREE)

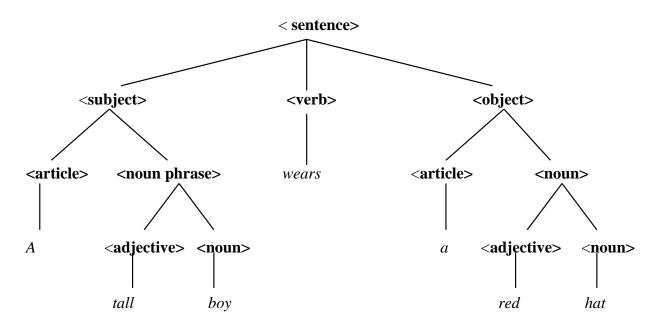
Pohon berakar yang urutan anak-anaknya penting disebut **pohon terurut** (*ordered tree*).



(a) dan (b) adalah dua pohon terurut yang berbeda

POHON N-ARY

• Pohon berakar yang setiap simpul cabangnya mempunyai paling banyak *n* buah anak disebut **pohon** *n-ary*.

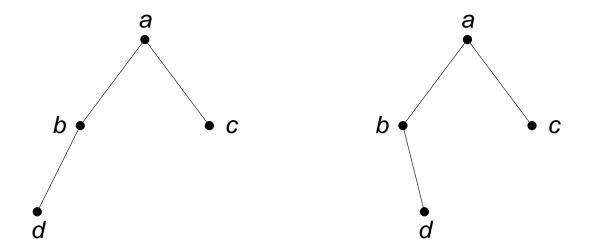


Gambar Pohon parsing dari kalimat A tall boy wears a red hat

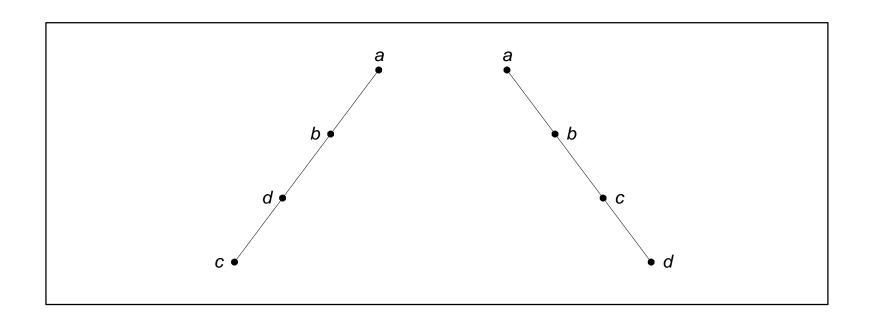
• Pohon *n-ary* dikatakan **teratur** atau **penuh** (*full*) jika setiap simpul cabangnya mempunyai tepat *n* anak.

POHON BINER (BINARY TREE)

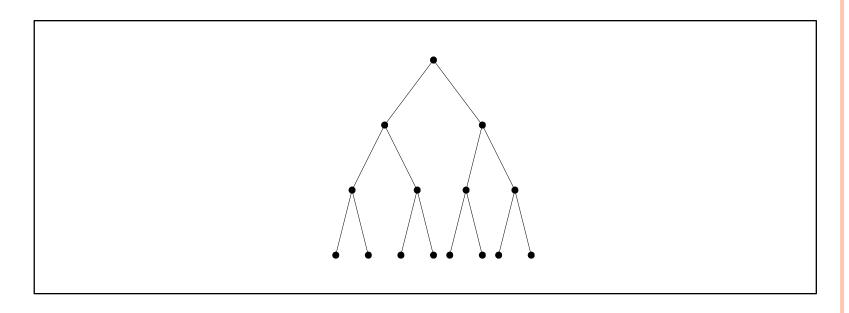
- o Adalah pohon n-ary dengan n = 2.
- Pohon yang paling penting karena banyak aplikasinya.
- Setiap simpul di adlam pohon biner mempunyai paling banyak 2 buah anak.
- Dibedakan antara anak kiri (left child) dan anak kanan (right child)
- Karena ada perbedaan urutan anak, maka pohon biner adalah pohon terurut.



Gambar Dua buah pohon biner yang berbeda



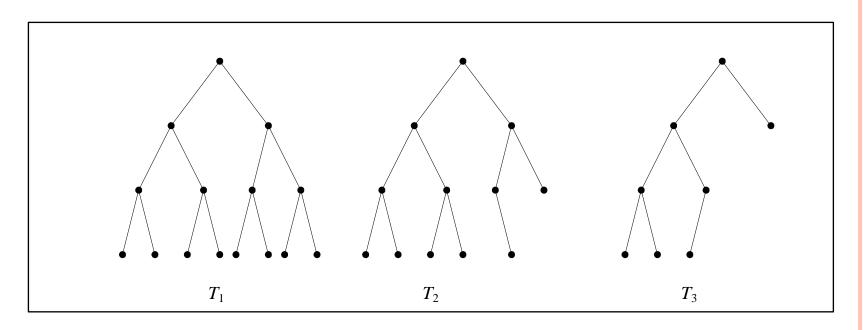
Gambar (a) Pohon condong-kiri, dan (b) pohon condong kanan



Gambar Pohon biner penuh

Pohon Biner Seimbang

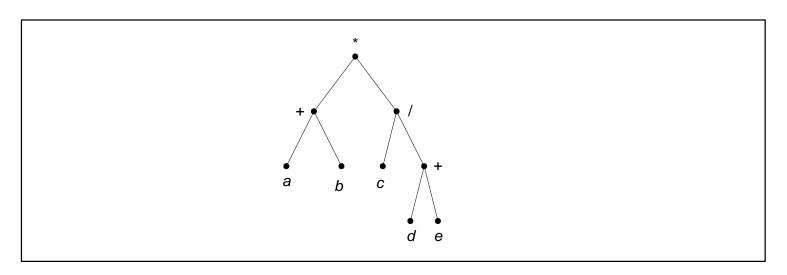
Pada beberapa aplikasi, diinginkan tinggi upapohon kiri dan tinggi upapohon kanan yang seimbang, yaitu berbeda maksimal 1.



Gambar T_1 dan T_2 adalah pohon seimbang, sedangkan T_3 bukan pohon seimbang.

TERAPAN POHON BINER

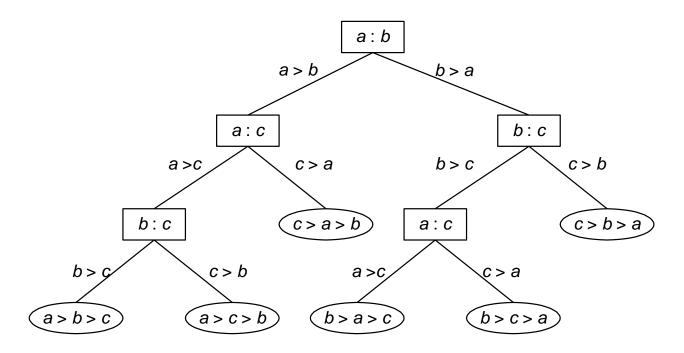
1. Pohon Ekspresi



Gambar Pohon ekspresi dari (a + b)*(c/(d + e))

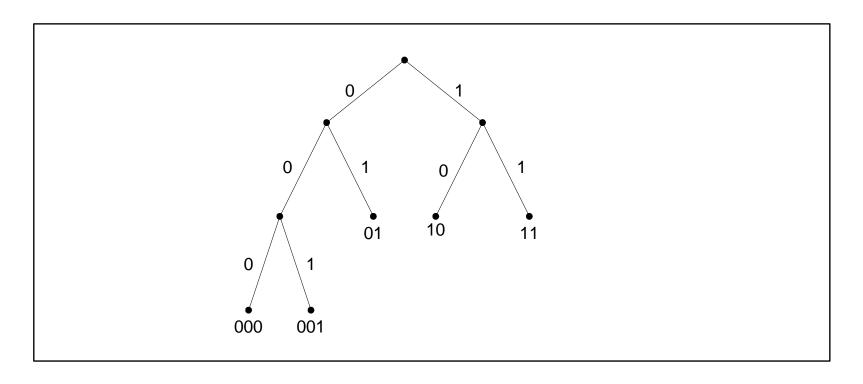
daun → operand simpul dalam → operator

2. Pohon Keputusan



Gambar Pohon keputusan untuk mengurutkan 3 buah elemen

3. Kode Awalan



Gambar Pohon biner dari kode prefiks { 000, 001, 01, 10, 11}

4. Kode Huffman

Tabel Kode ASCII

Simbol	Kode ASCI		
A	01000001		
B	01000010		
\boldsymbol{C}	01000011		
D	01000100		

rangkaian bit untuk string 'ABACCDA':

atau
$$7 \times 8 = 56$$
 bit $(7 byte)$.

Tabel Tabel kekerapan (frekuensi) dan kode Huffman untuk *string ABACCDA*

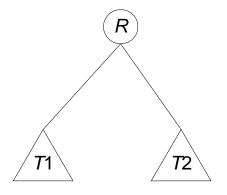
Simbol	Kekerapan	Peluang	Kode Huffman
A	3	3/7	0
В	1	1/7	110
C	2	2/7	10
D	1	1/7	111

Dengan kode Hufman, rangkaian bit untuk 'ABACCDA':

0110010101110

hanya 13 bit!

5. Pohon Pencarian Biner

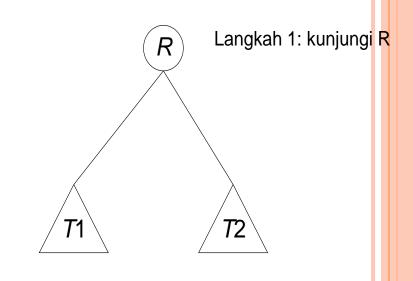


Kunci(T1) < Kunci(R)

Kunci(T2) > Kunci(R)

PENELUSURAN POHON BINER

- 1. Preorder: R, T1, T2
 - kunjungi R
 - kunjungi T1 secara preorder
 - kunjungi T2 secara preorder

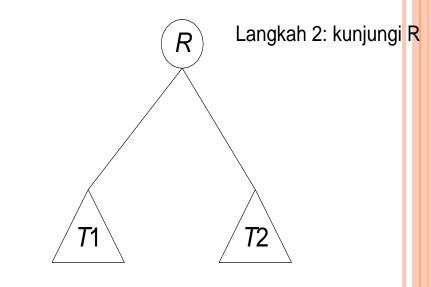


Langkah 2: kunjungi *T*1 secara *preorder*

Langkah 3: kunjungi *T*2 secara *preorder*

PENELUSURAN POHON BINER

- 2. Inorder: T1, R, T2
 - kunjungi *T*1 secara *inorder*
 - kunjungi R
 - kunjungi T2 secara inorder

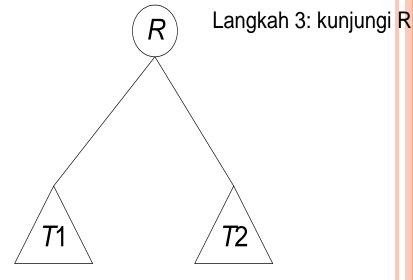


Langkah 1: kunjungi *T*1 secara *inorder*

Langkah 3: kunjungi *T*2 secara *inorder*

PENELUSURAN POHON BINER

- $3.\ Postorder: T1,\ T2\ , \ R$
 - kunjungi *T*1 secara *postorder*
 - kunjungi T2 secara postorder
 - kunjungi R



Langkah 1: kunjungi *T*1 secara *postorder*

Langkah 2: kunjungi *T*2 secara *postorder*