Quantitative Analysis for Management Linear Programming Models:

Linear Programming Problem

- Tujuan adalah maximize or minimize variabel dependen dari beberapa kuantitas variabel independen (fungsi tujuan).
- A. Batasan-batasan yang diperlukan guna mencapai tujuan.
- Tujuan dan Batasan dinyatakan dalam persamaan linear.

Basic Assumptions of Linear Programming

- ♦ Certainty
- Proportionality
- Additivity
- ♦ Divisibility
- Nonnegativity

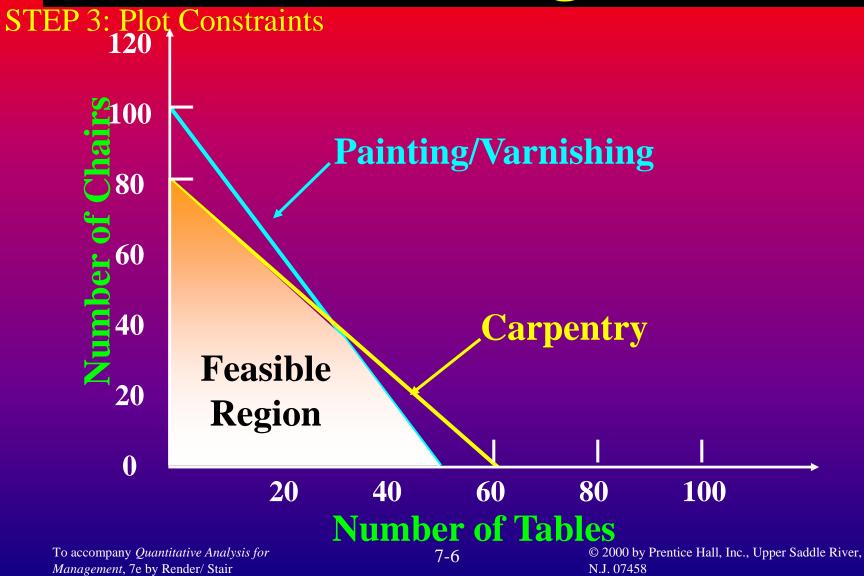
Flair Furniture Company Data - Table 7.1

Hours Required to Produce One Unit

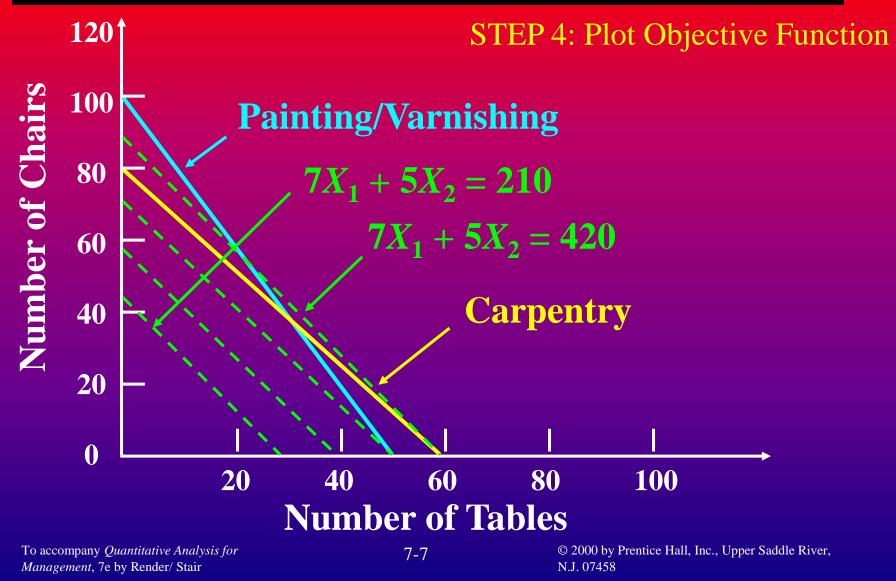
Department	X ₁ Tables	X ₂ Chairs	Available Hours This Week
Carpentry	4	3	240
Painting/Varnishing	2	1	100
Profit/unit	\$7	\$5	

Flair Furniture Company Data - Table 7.1

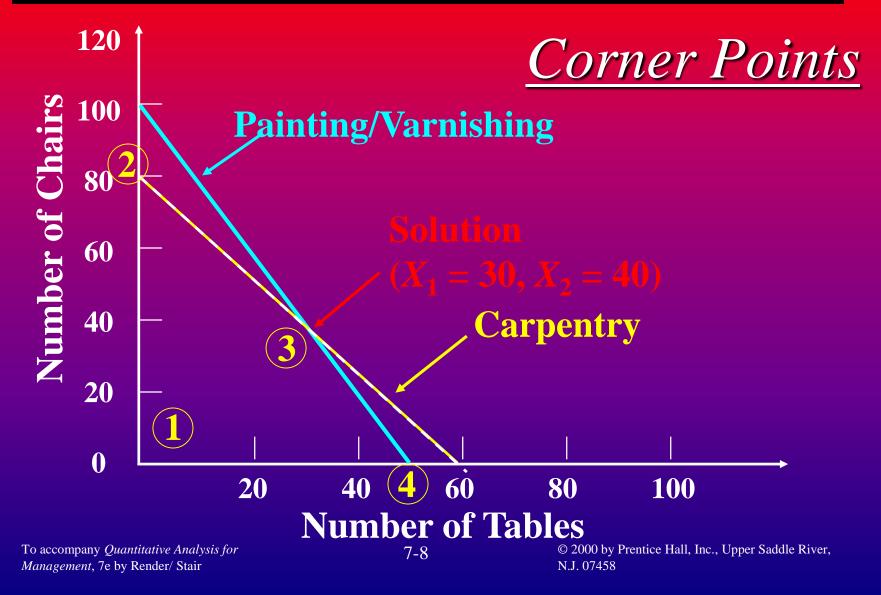
STEP 1:


Objective: Maximize: $7X_1 + 5X_2$

STEP 2:



$4X_1 + 3X_2 \le 240 \text{ (carpentry)}$ $2X_1 + 1X_2 \le 100 \text{ (painting & varnishing)}$


Flair Furniture Company Feasible Region

Flair Furniture Company Isoprofit Lines

Flair Furniture Company Optimal Solution

Test Corner Point Solutions

Point 1) (0,0) => 7(0) + 5(0) =

Point 2) $(0,100) \implies 7(0) + 5(80) = 400

Point 3) $(30,40) \implies 7(30) + 5(40) = 410

Point 4) (50,0) $\Rightarrow 7(50) + 5(0) = 350

© 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Solve Equations Simultaneously

To get X1 & X2 values for Point 3:

 $4X1 + 3X2 \le 240 \qquad 2X1 + 1X2 \le 100 \\ X1 = 60 - 3/4 X2 \qquad X1 = 50 - 1/2 X2$

60 - 3/4 X2 = 50 - 1/2 X2 60 - 50 = 3/4 X2 - 1/2 X2 10 = 1/4 X240 = X2;

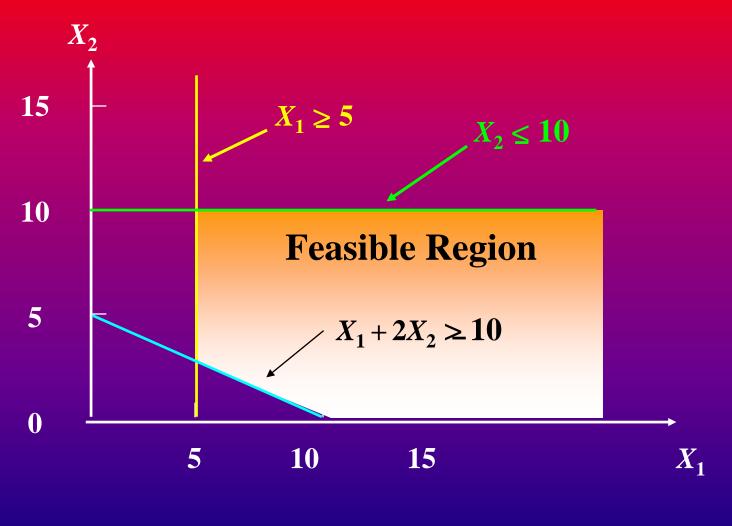

so, 4X1 + 3(40) = 2404X1 = 240 - 120X1 = 30

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Special Cases in LP

- ♦ Infeasibility
- Unbounded Solutions
- Redundancy
- Degeneracy
- More Than One Optimal Solution

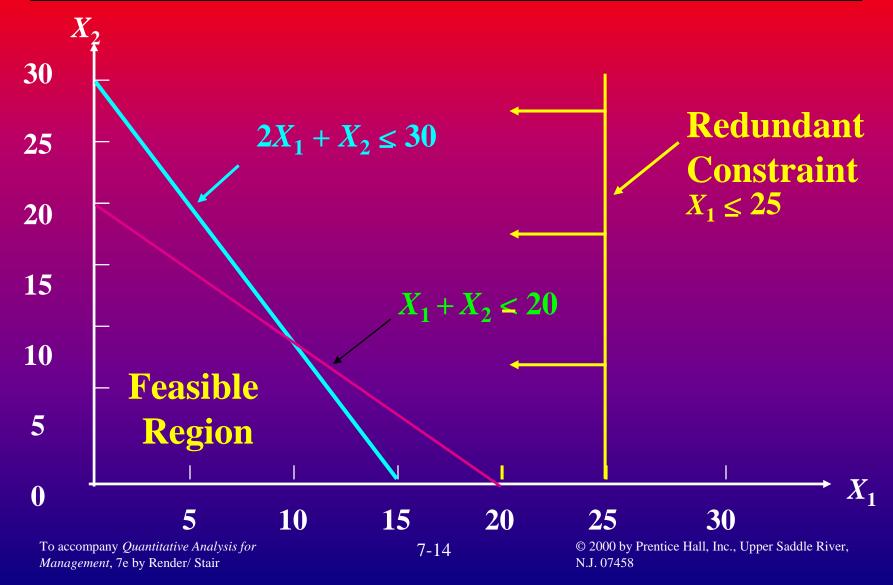
A Problem with No Feasible Solution

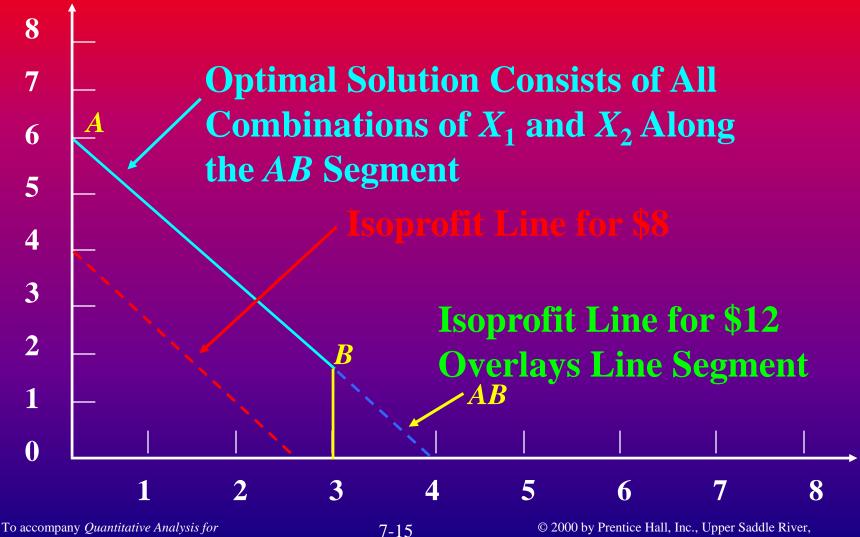


To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

7-12

© 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458


A Solution Region That is Unbounded to the Right


To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

© 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

A Problem with a Redundant Constraint

An Example of Alternate Optimal Solutions

Management, 7e by Render/ Stair

N.J. 07458

Marketing Applications

Media Selection - Win Big Gambling Club

Medium	Audience Reached Per Ad	Cost Per Ad(\$)	Maximum Ads Per Week
TV spot (1 minute)	5,000	800	12
Daily newspaper (full-page ad)	8,500	925	5
Radio spot (30 seconds, prime time)	2,400	290	25
Radio spot (1 minute, afternoon)	2,800	380	20

Win Big Gambling Club

Maximize: $5000X_1 + 8500X_2 + 2400X_3 + 2800X_4$

Subject to: $X_1 \leq 12$ (max TV spots/week) $X_2 \leq 5$ (max newspaper ads/week) $X_3 \leq 25$ (max 30 - sec. radio spots/week) $X_4 \leq 20 \pmod{\text{max1-min. radio spots/week}}$ $800 X_1 + 925 X_2 + 290 X_3 + 380 X_4 \le 8000$ (weekly ad budget) $X_3 + X_4 \ge 5$ (min radio spots/week) $290X_3 + 380X_4 \leq 1800$ (max radio expense)

Manufacturing Applications

Production Mix - Fifth Avenue

Variety of Tie	Selling Price per Tie (\$)	Monthly Contract Minimum		Material Required per Tie (Yds)	
All silk	6.70	6000	7000	0.125	100% silk
All polyester	3.55	10000	14000	0.08	100% polyester
Poly- cotton blend 1	4.31	13000	16000	0.10	50% poly/50% cotton
Poly- cotton - blend 2	4.81	6000	8500	0.10	30% poly/70% cotton

Fifth Avenue

- Maximize: 4.08X₁ + 3.07X₂ + 3.56X₃ + 4.00X₄ Subject to :
- $0.125 X_1 \leq 800$ (yards of silk)
- $0.08X_2 + 0.05X_3 + 0.03X_4 \le 3000$ (yards polyester)
- $0.05 X_3 + 0.07 X_4 \le 1600$ (yards cotton)
- $X_1 \ge 6000$ (contract min,silk) $X_1 \le 7000$ (contract max,silk)
- $X_2 \ge 1000$ (contract min, all polyester)
- $X_2 \leq 14000$ (contract max, all polyester)
- $X_3 \ge 13000$ (contract min, blend1) $X_3 \le 16000$ (contract max, blend1)

 $X_4 \ge 6000$ (contract min, blend 2) $X_4 \le 8500$ (contract max, blend 2)

To accompany *Quantitative Analysis for Management*, 7e by Render/Stair

Manufacturing Applications

Truck Loading - Goodman Shipping

Item	Value (\$)	Weight (lbs)
1	22,500	7,500
2	24,000	7,500
3	8,000	3,000
4	9,500	3,500
5	11,500	4,000
6	9,750	3,500

Goodman Shipping

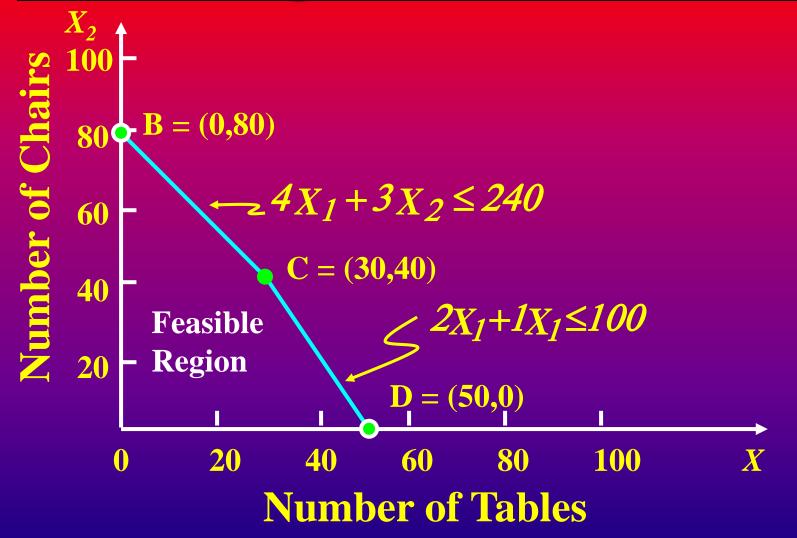
Maximize load value : 22500 X_1 + 24000 X_2 + 8000 X_3 + 9500 X_4 + 11500 X_5 + 9750 X_6

Subject to :

 $7500 X_{1} + 7500 X_{2} + 3000 X_{3} + 3500 X_{4} + 4000 X_{5} + 3500 X_{6} \le 10000 \text{ (Capacity)}$ $X_{1} \le 1$ $X_{2} \le 1$ $X_{3} \le 1$ $X_{4} \le 1$ $X_{5} \le 1$

$$X_6 \leq 1$$

Flair Furniture Company


Hours Required to Produce One Unit

Department		X ₁ Tables	X ₂ Chairs	Available Hours This Week
Carpentry		4	3	240
Painting/Varnis	shing	2	1	100
Profit/unit		\$7	\$5	
Constraints:			240 (carper 100 (paintin	ntry) 1g & varnishing)
Objective:	Μ	laximize:	$7X_1 + 52$	X ₂
To accompany Quantitative Analy	esis for	9-22	© 2000 b	y Prentice Hall, Inc., Upper Saddle River,

Management, 7e by Render/ Stair

N.J. 07458

Flair Furniture Company's Feasible Region & Corner Points

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Flair Furniture - Adding Slack Variables

Constraints:

 $4X_1 + 3X_2 \le 240$ (carpentry)

 $2X_1 + 1X_2 \le 100$ (painting & varnishing) Constraints with Slack Variables

 $4X_1 + 3X_2 + S_1 = 240$ (carpentry)

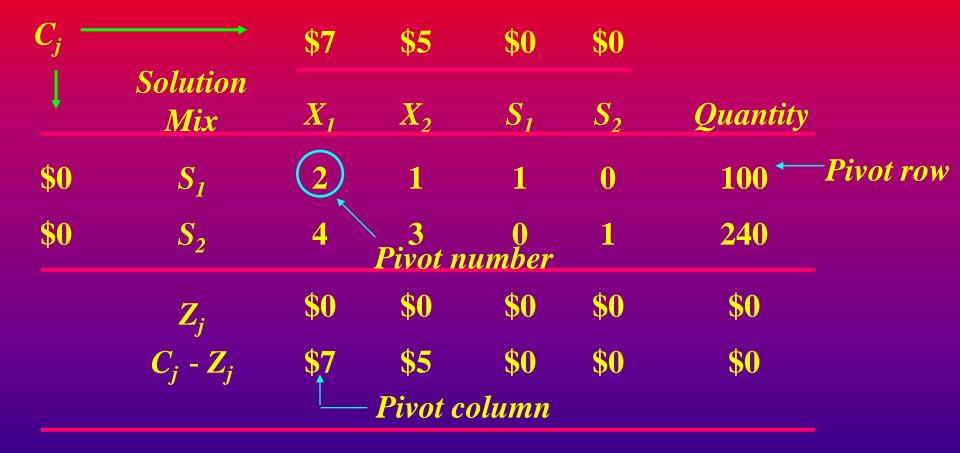
 $2X_1 + 1X_2 + S_2 = 100$ (painting &varnishing) Objective Function

 $7X_1 + 5X_2$ Objective Function with Slack Variables

 $7X_1 + 5X_2 + 1S_1 + 1S_2$

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

@ 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458


Flair Furniture's Initial Simplex Tableau

Profit Real Slack **Production** per *Constant* Variables Variables Unit Mix Column Columns Columns **Column Column** Profit per \$5 **\$0 \$0 \$7** unit row Solution S_2 Quantity X_2 S_1 X_1 Mix **100** *Constraint equation* **\$0** S₁ 2 1 1 rows 240 **\$0** 3 S₂ 4 Gross **\$0 \$0 \$0 \$0 \$0** profit row \mathbf{Z}_{j} Net **\$0** \$7 $C_i - Z_i$ **\$5 \$0 \$0** profit row To accompany Quantitative Analysis for 9-25 © 2000 by Prentice Hall, Inc., Upper Saddle River,

Management, 7e by Render/ Stair

N.J. 07458

Pivot Row, Pivot Number Identified in the Initial Simplex Tableau

Completed Second Simplex Tableau for Flair Furniture

C_j –		\$7	\$5	\$0	\$0	
	Solution Mix	X ₁	X_2	S_{I}	<i>S</i> ₂	Quantity
\$7	X _I	1	1/2	1/2	0	50
\$0	S_2	0	1	-2	1	40
	Z_i	\$7	\$7/2	\$7/2	\$0	\$350
	$C_j - Z_j$	\$0	\$3/2	-\$7/2	\$0	

Pivot Row, Column, and Number Identified in Second Simplex Tableau

C_j –	`	\$7	\$5	\$0	\$0	
+	Solution Mix	<i>X</i> ₁	<i>X</i> ₂	S_1	<i>S</i> ₂	Quantity
\$7	X_{1}	1	1/2	1/2	0	50
\$0	<i>S</i> ₂	0		-2 Pivot ni	1 umber	40 ← <i>Pivot row</i>
	Z_i	\$7	\$7/2	\$7/2	\$0	\$350
	$C_j - Z_j$	\$0	\$3/2	-\$7/2	\$0	(Total Profit)
				Pivot co	lumn	

Calculating the New X₁ Row for Flair's Third Tableau

Number $\sum_{in new}^{Number} X_1 row$) = ($\left(\begin{array}{c} \text{Number} \\ \text{in old} \\ X_1 \text{ row} \end{array}\right)$) -	Number above pivot number	x	Corresponding number in new X ₂ row
1	=	1	-	(1/2)	X	(0)
0	=	1/2	-	(1/2)	X	(1)
3/2	=	1/2	-	(1/2)	X	(-2)
-1/2	=	0	-	(1/2)	X	(1)
30	=	50	-	(1/2)	X	(40)

Final Simplex Tableau for the Flair Furniture Problem

C_j –		\$7	\$5	\$0	\$0	
Ļ	Solution Mix	X ₁	<i>X</i> ₂	S_1	<i>S</i> ₂	Quantity
\$7	X_{I}	1	0	3/2	-1/2	30
\$5	X_2	0	1	-2	1	40
	Z_i	\$7	5	\$1/2	\$3/2	\$410
	$C_j - Z_j$	\$0	\$0	-\$1/2	-\$3/2	

Simplex Steps for Maximization

- 1. Choose the variable with the greatest positive $C_j Z_j$ to enter the solution.
- 2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-topivot-column ratio.
- **3.** Calculate the new values for the pivot row.
- **4.** Calculate the new values for the other row(s).
- 5. Calculate the C_j and C_j Z_j values for this tableau. If there are any C_j - Z_j values greater than zero, return to Step 1.

Surplus & Artificial Variables Constraints $5X_1 + 10X_2 + 8X_3 \ge 210$ $25 X_1 + 30 X_2$ = 900 **Constraints-Surplus & Artificial Variables** $5X_1 + 10X_2 + 8X_3 - S_1 + A_1 = 210$ $25X_1 + 30X_2$ $+A_2 = 900$ **Objective Function** Min: $5X_1 + 9X_2 + 7X_3$ **Objective Function-Surplus & Artificial Variables** Min: $5X_1 + 9X_2 + 7X_3 + 0S_1 + MA_1 + MA_2$

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Simplex Steps for Minimization

- 1. Choose the variable with the greatest negative $C_j Z_j$ to enter the solution.
- 2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-topivot-column ratio.
- **3.** Calculate the new values for the pivot row.
- **4.** Calculate the new values for the other row(s).
- 5. Calculate the C_j and $C_j Z_j$ values for this tableau. If there are any $C_j - Z_j$ values less than zero, return to Step 1.

Special Cases Infeasibility

C _j		5	8	0	0	Μ	Μ	
	Solution	X ₁	X ₂	S ₁	S ₂	A ₁	A ₂	Qty
	Mix							
5	X ₁	1	0	-2	3	-1	0	200
8	X ₂	0	1	1	2	-2	0	100
Μ	A ₂	0	0	0	-1	-1	1	20
	$\mathbf{Z}_{\mathbf{j}}$	5	8	-2	31-M	-21-M	Μ	1800+20M
	C _j -Z _j	0	0	2	M-31	2M+21	0	

Special Cases Unboundedness

Cj		6	9	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
9	\mathbf{X}_2	-1	1	2	0	30
0	S ₂	-2	0	-1	1	10
	$\mathbf{Z}_{\mathbf{j}}$	-9	9	18	0	270
	C _j -Z _j	15	0	-18	0	

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

 $\ensuremath{\textcircled{O}}$ 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Pivot Column

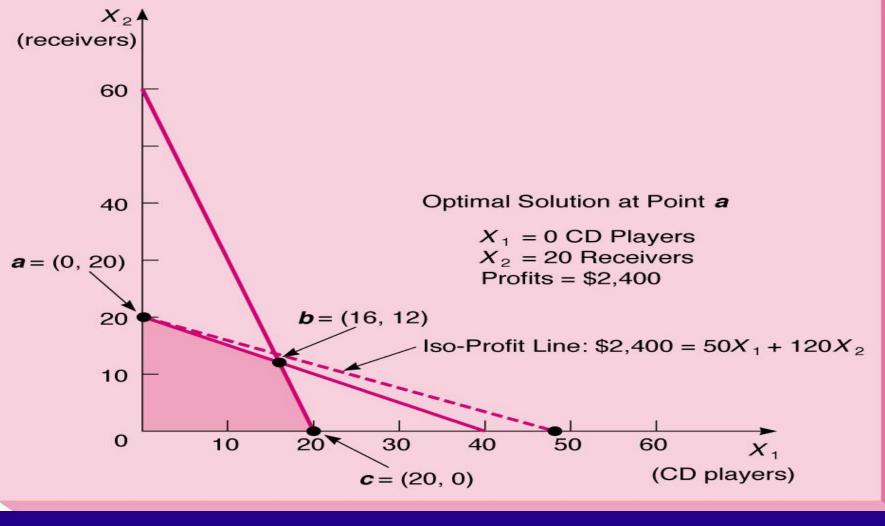
Special Cases Degeneracy

Cj		5	8	2	0	0	0	
	Solution Mix	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	Qty
8	\mathbf{X}_2	1/4	1	1	-2	0	0	10
0	S ₂	4	0	1/3	-1	1	0	20
0	S_3	2	0	2	2/5	0	1	10
	$\mathbf{Z_{j}}$	2	8	8	16	0	0	80
	C _j -Z _j	3	0	6	16	0	0	

- Pivot Column

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

 $\ensuremath{\textcircled{O}}$ 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458


Special Cases Multiple Optima

C _j		3	2	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
2	\mathbf{X}_2	3/2	1	1	0	6
0	S_2	1	0	1/2	1	3
	\mathbf{Z}_{j}	3	2	2	0	12
	C _j -Z _j	0	0	-2	0	

Sensitivity Analysis High Note Sound Company

Max : $50 X_1 + 120 X_2$ Subject to : $2 X_1 + 4 X_2 \le 80$ $3 X_1 + 1 X_2 \le 60$

Sensitivity Analysis High Note Sound Company

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

© 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

Simplex Solution High Note Sound Company

Cj		50	120	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
120	X ₂	1/2	1	1⁄4	0	20
0	S_2	5/2	0	-1/4	1	40
	$\mathbf{Z}_{\mathbf{j}}$	60	120	30	0	2400
	C _j -Z _j	0	0	-30	0	

Simplex Solution High Note Sound Company

Cj		50	120	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
120	X ₂	1/2	1	1⁄4	0	20
0	S ₂	5/2	0	-1/4	1	40
	$\mathbf{Z}_{\mathbf{j}}$	60	120	30	0	2400
	C _j -Z _j	-10	0	-30	0	

Nonbasic Objective Function Coefficients

Cj		50	120	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
120	X ₂	1/2	1	1⁄4	0	20
0	S ₂	5/2	0	-1/4	1	40
	Zj	60	120	30	0	2400
	C _j -Z _j	-10	0	-30	0	

Basic Objective Function Coefficients

Cj		50	120	0	0	
	Solution Mix	X ₁	X ₂	S ₁	S ₂	Qty
120 +Δ	\mathbf{X}_{2}	1/2	1	1⁄4	0	20
0	S ₂	5/2	0	-1/4	1	40
	$\mathbf{Z}_{\mathbf{j}}$	60+1/2∆	120+ Δ	<u>30+1/4∆</u>	0	2400+20∆
	C _j -Z _j	-10-1/2∆	0	-30-1/4 ∆	0	

Simplex Solution High Note Sound Company

Cj		50	120	0	0	
	Solution Mix	X ₁	\mathbf{X}_2	S ₁	S ₂	Qty
120	\mathbf{X}_2	1/2	1	1/4	0	20
0	S ₂	5/2	0	-1/4	1	40
	Zj	60	120	30	0	2400
	C _j -Z _j	0	0	-30	0	

Objective increases by 30 if 1 additional hour of electricians time is available. —

To accompany *Quantitative Analysis for Management*, 7e by Render/ Stair

9-44

© 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458

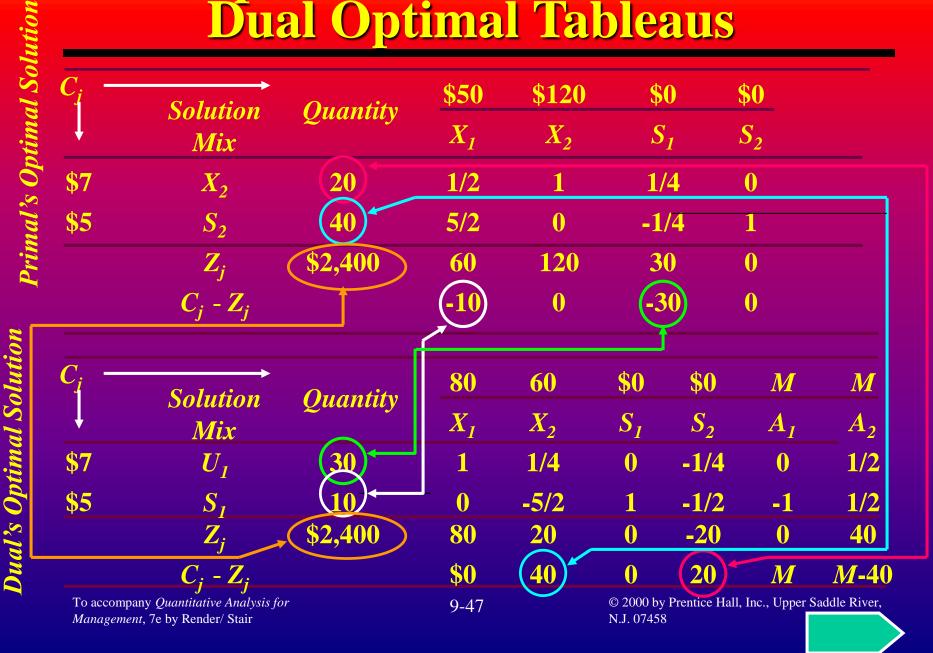
Steps to Form the Dual

To form the Dual:

- If the primal is max., the dual is min., and vice versa.
- The right-hand-side values of the primal constraints become the objective coefficients of the dual.
- * The primal objective function coefficients become the right-hand-side of the dual constraints.
- The transpose of the primal constraint coefficients become the dual constraint coefficients.
- ***** Constraint inequality signs are reversed.

Primal & Dual

Primal:


Max : $50 X_1 + 120 X_2$ Subject to : $2 X_1 + 4 X_2 \le 80$

 $3X_1 + 1X_2 \le 60$

Dual

Min: $80U_1 + 60U_2$ Subject to: $2U_1 + 3U_2 \ge 50$ $4U_1 + 1U_2 \ge 120$

Comparison of the Primal and Dual Optimal Tableaus

