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Bounded variation and the asymmetric
distribution of scaled earnings
Demetris Christodoulou and Stuart McLeay*

Abstract— This paper proposes a finite limits distribution for scaled accounting earnings. The probability density function
of earnings has been the subject of a great deal of attention, indicating an apparent ‘observational discontinuity’ at zero.
Paradoxically, the customary research design used in such studies is built on the implied assumption that the distribution of
scaled accounting earnings should approximate a continuous normal variable at the population level. This paper shows that
such assumptions may be unfounded, and, using large samples from both the US and the EU, the study provides alternative
evidence of a consistently asymmetric frequency of profits and losses. This casts further doubt on the interpretation of the
observed discontinuity in the distribution of earnings as prima facie evidence of earnings management. A particular
innovation in this paper is to scale the earnings variable by the magnitude of its own components, restricting the standardised
range to [–1,1]. Nonparametric descriptions are provided that improve upon the simple histogram, together with non-normal
parametric probability estimates that are consistent with the scalar that is proposed. A notable advantage of this approach is
that it avoids some of the statistical shortcomings of commonly used scalars, such as influential outliers and infinite
variances.
Keywords: accounting earnings; scalars; deflators; boundary conditions; parametric and nonparametric density

estimation

1. Introduction
The probability density function of accounting
earnings has attracted a great deal of attention,
especially in understanding the distribution of
earnings in different settings (e.g. Dechow et al.,
2003; Burgstahler and Eames, 2003; Leuz et al.,
2003; Brown and Caylor, 2005; Peasnell et al.,
2005; Yoon, 2005; Daske et al., 2006; Maijoor and
Vanstraelen, 2006; Gore et al., 2007). However, a
problematic feature of research design in this area is
that the use of an earnings deflator may introduce
sample bias. Indeed, according to Durtschi and
Easton (2005), the observed discontinuity in the
distribution of earnings could be a spurious result
that is due to scaling by variables that are system-
atically lower for loss observations than for profit
observations. But other researchers (Beaver et al.,
2007; Jacob and Jorgensen, 2007; Kerstein and Rai,
2007) have since rejected the arguments put
forward by Durtschi and Easton, and claim that
the abrupt changes documented at zero earnings are

not primarily attributable to scaling.1 Whilst there is
a growing body of work that already questions the
assertion that the observed discontinuity is simply a
statistical effect, it is noticeable nevertheless that
earnings management studies are now being
designed with alternative scalars in mind (e.g.
Petrovits, 2006; Daniel et al., 2008).

In this paper, we consider another shortcoming
that may lead researchers to question the conclu-
sions arrived at regarding the distribution of earn-
ings, and in this context we propose an entirely new
scalar with some remarkable properties. In essence,
our main concern is that inferences about scaled
accounting earnings are generally drawn by pre-
suming normality in the limit. This gives rise to an
obvious contradiction in research design when the

CCH - ABR Data Standards Ltd, Frome, Somerset – 18/8/2009 03 ABR Demetris.3d Page 347 of 372

* The authors are at the University of Sydney and the
University of Sussex. They are grateful for the helpful
contributions of Maurice Peat, Maxwell Stevenson and Jo
Wells. They also thank the anonymous reviewers for construct-
ive comments.

Further details of the authors’ statistical programming code
are available at http://meafa.econ.usyd.edu.au/.

Correspondence should be addressed to: Dr Demetris
Christodoulou, MEAFA, Faculty of Economics and Business,
The University of Sydney, NSW 2006, Australia. E-mail:
d.christodoulou@econ.usyd.edu.au.

This paper was accepted for publication in February 2009.

1 Durtschi and Easton (2005) suggest scaling by the number
of shares, and the visual evidence published by these authors
suggests that, for earnings per share, the distribution is smoother
around zero than was previously documented using other
scalars. However, Beaver, et al. (2007) are at odds with this
view, and their evidence reveals that the number of outstanding
shares tends, in practice, to be higher for losses than profits,
which has the effect of shifting scaled loss observations towards
zero, and could therefore be responsible for the reduction in the
kink in the distribution of earnings when scaled by the number
of shares. Jacob and Jorgensen (2007) and Kerstein and Rai
(2007) also reject the arguments put forward by Durtschi and
Easton, documenting abrupt changes at zero that are not
primarily attributable to scaling. The impact of this recent
research is now evident in additional testing for such biases –
see for example Ballantine et al. (2007) who use a lagged total
assets scalar in examining earnings management in hospital
trusts, and test accordingly for any systematic difference in the
size of the scalar across surplus and deficit trusts.
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apparent ‘discontinuity’ about zero earnings is
evaluated in an asymptotic Gaussian setting with a
(supposedly) random sampling of firms. In theory,
such a design implies that, as the sample size tends
towards its population limit, the less the observed
‘discontinuity’ would be and that eventually it
would vanish. If, however, a disproportion is
expected around zero regardless of sample size,
then expectations should not be based on the normal
curve and an alternative framework is required,
using either a suitable nonparametric approach or a
more appropriate parametric model. This paper
introduces such a framework, together with the
appropriate scalar.

To illustrate, Figure 1 provides a histogram of the
central empirical frequencies of net income scaled
by sales, using the sample that is employed in this
research study. The lack of fit to the normal curve
that can be seen around zero is generally interpreted
as prima facie evidence of earnings management,
but, as mentioned already, this inference depends on
the appropriateness of the normality assumption for
the population.2 Figure 1 also clearly demonstrates
how inferences concerning the conjectured discon-
tinuity depend on the origin and bin width of the
histogram estimator. In this respect, it is usual to
examine the difference between the observed
probability of earnings for the ith bin next to zero
(estimated as pi ¼ ni=n, where n is the total number
of observations and ni the number of observations
that fall in the ith bin) and an expected probability
that is calculated as the average of the two adjacent
bins, i.e.E pið Þ ¼ pi�1 þ piþ1ð Þ=2. If the normalised
difference jpi � E pið Þj=std:error is large, then the
observational disproportion around zero is taken as
an indication of earnings management. However,
the histogram itself defines the weight of the
observed probabilities pi, and Figure 1 shows how
a bin width and origin that are selected to separate
the groupings at zero will bias the nonparametric
representation in a way that emphasises this
disproportion.3

In view of the implicit shortcomings outlined

above, and in the light of the debate initiated by
Durtschi and Easton (2005), we motivate this paper
by first explaining why we might expect an
asymmetric shape in net income, not simply as the
outcome of earnings management but for more
fundamental reasons. Then we describe an
approach to modelling earnings using a scalar
which reflects the magnitude of the components of
income, from which we derive a measure of scaled
accounting earnings with known bounds. A major
benefit of the known range of variation under the
transformation is that the distributional space
remains standardised for all observations regardless
of the sample size and the degree of heterogeneity.
Indeed, we are able to show how the variation of
scaled accounting earnings asymptotically approxi-
mates the limits that are reached in the extreme
cases where firms report either zero costs or zero
sales. To examine the shape of the earnings
distribution, a kernel density estimator is employed
that provides a more detailed and unbiased descrip-
tion than the commonly-used histogram estimator,
showing that net income is consistently asymmetric
across samples drawn from different economic
regions and different accounting jurisdictions. The
paper also derives a bounded parametric density
function with the ability to accommodate such
asymmetry, which is analytically superior to the
standard normal. Given the above, we conclude
with evidence that the key characteristic of scaled
accounting earnings is its asymmetry, and it is
suggested in the final discussion that this may be
attributable to a great extent to firm-level hetero-
geneity effects, as the asymmetry is removed when
we examine mean-adjusted densities at the firm
level.

2. The distribution of accounting earnings
In this paper, we argue that normality in scaled
earnings is not consistent with the character of the
accounting variables involved in calculating and
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2 This type of analysis dates back to Burgstahler and Dichev
(1997) and Degeorge et al. (1999), who investigate bottom-line
net income, as we do in this paper. They scale net income by
market value and number of shares respectively. For a sample of
firm-year earnings, they each observe a disproportionate
frequency around zero and attribute this result to the upwards
management of earnings, in the sense that listed firms with small
losses attempt to beat the benchmark of zero and thus report
small profits. Degeorge et al. (1999) test the null hypothesis that
the density of earnings is smooth at the point of interest,
assuming that the change in probability from bin i to bin i+1 is
approximately normal. We infer that this implies normality in
the parent distribution as the sum of normal variates is itself
normal.

3 It is a common practice to round the number of bins to the
nearest even integer and then to compute the expected value E
(pi), so that the bins are separated at zero. Figure 1 illustrates the
potential misrepresentation that is inherent in this approach by
comparing two histograms with the same origin and range, with
one separating at zero and the other having an odd number of
bins and therefore not separating at zero. A histogram with 30
bins generates the well-documented difference in probabilities
around zero, with pi – E(pi) in the negative bin adjacent to zero
equal to �0.0497 for the EU and �0.0305 for the US, the
difference in the positive bin adjacent to zero being equal to
0.0467 for the EU and 0.0325 for the US. However, when we
estimate a histogram with 29 bins, we find little difference
between the observed and expected probabilities for the bin
which contains the point zero (–0.0097 for the EU and�0.0007
for the US), and what is more, the shape no longer implies an
observational disproportion at zero.
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scaling earnings. To start with, the double-entry
bookkeeping system that generates earnings
requires a one-to-one correspondence between
debits and credits that cannot be related to the

randomness of normal probability laws (Ellerman,
1985; Cooke and Tippett, 2000). Indeed, the
seminal work of Willett (1991) on the stochastic
nature of accounting calculations provides a general
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Figure 1
The frequency distribution of net income scaled by sales

Note: The histograms describe the frequencies of net income scaled by sales within the range [–0.25, 0.25],
for 48,563 EU firm-years and 104,170 US firm-years covering the period 1985–2004. The shaded histogram
has 29 bins and the histogram drawn in outline has 30 bins. In the latter case, bin separation at zero
conveys the impression of a ‘discontinuity’ at zero, whereas the empirical frequencies depicted by the
shaded histogram appear much smoother. For each plot, the superimposed dashed curve represents the
normal curve fitted with the mean and standard deviation of the sample, displayed here over the range
[–0.25,0.25].
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proof that bookkeeping figures, and earnings in
particular, may be better represented as determinis-
tic measures of random variables. Given that
double-entry bookkeeping is a series of algebraic
operations on ordered pairs of such numbers, it is
evident that the accounting process creates an
endogenous matrix of linearly related information,
which will include all of the components of earnings
and each of the book-based scalars commonly used
in accounting research. These relationships will in
turn determine the variance of scaled earnings. As
shown elsewhere, earnings scaled by assets –

although clearly non-normal – will most likely
have finite variance; on the other hand, earnings
scaled by sales will tend towards infinite variance;
and earnings scaled by equity will be Cauchy, with
infinite variance and no location (McLeay, 1986).4

As for the observed disproportion in scaled
earnings around zero, this may be the result of a
number of other factors. First, it is now generally
accepted that the asymmetry is attributable in part to
transitory components, which tend to be larger and
more frequent for losses than for profits, and with
differing implications for corporate income taxes
(Beaver, McNichols and Nelson, 2007). Indeed, as
these authors argue, while income taxes will tend to
push profits towards zero, transitory items will tend
to pull loss observations away from zero. Therefore,
it would be reasonable for us to infer that the great
concentration in small profits and the asymmetry
around zero might result as much from fiscally-
driven downward pressure on reported profits as it
does from upward pressure to avoid reporting
losses. Age, size and listing requirements also
offer themselves as partial explanations for asym-
metry about zero. Undoubtedly, age is linked to
size, the latter usually being proxied by sales or total
assets, each of which is known to grow exponen-
tially. Larger size firms are shown to exhibit more
stable income streams and an accelerated mean-
reversion following a loss (e.g. Prais, 1976),
especially following extreme negative changes

(Fama and French, 2000). Moreover, listing
requirements favour profitable firms, as candidates
for listing are required to show evidence of
generating sustainable profits. Hence, as markets
grow, the number of newly quoted firms increases,
and these relatively small firms are most likely to
report small profits in their first years of listing.5

The likely disproportion around zero income has
also been attributed to risk averse behaviour.
Kahneman and Tversky (1979), on the psychology
of risk aversion, refer to a reflection effect that is
concave for profits and convex for losses, and
steeper for losses than for gains, yielding an S-
shaped asymmetric function about zero income.6

Along similar lines, Ijiri (1965) characterises the
zero point in accounting earnings as the modulator
of asymmetry, imposed on the firm either externally
or internally. However, in addition to these theor-
etically-grounded explanations, where zero in earn-
ings acts as a threshold, we should also recognise
that the observation of a disproportion around zero
in a sample of company earnings could arise in a
variety of statistical contexts, of which we comment
here only on the most important. First, a gap in
observational frequency may be the result of
incomplete sampling, which may cause the low
density below zero. However, this seems not to be
the case, as the samples that are selected are
generally consistent and as large as possible across
years and firms. Also, it may be supposed that the
sample contains observations from more than one
population. Such mixtures of samples essentially
imply a distribution derived from distinct popula-
tions with dissimilar moments, yet this also seems
not to be likely, as the firms that are pooled tend to
operate under shared economic conditions with
respect to competitiveness and maximisation of
stakeholders’ wealth. Although local modes might
be noticeable amongst pooled losses on the one
hand and pooled profits on the other hand, plainly it
would be inappropriate to classify a firm that may
report a loss one year and a profit the next as either a
loss-making entity or a profit-making entity.

In our opinion, a likely analytical explanation of
the problem is that the non-normal shape of the
curve arises directly from the theoretical funda-
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4 Note that, if we scale one pure accounting variable by
another, the mathematical boundaries imposed by the double-
entry system on the scaled variable are predictable, including a
lower bound of zero for total sales over total assets (Trigueiros,
1995), bounds of [0,1] for current assets over total assets
(McLeay, 1997), etc. An attempt at describing the complete set
of scaled accounting variables is included in McLeay and
Trigueiros (2002). There is further discussion and evidence
regarding the dynamics of scaling by geometric accounting
variables in Tippett (1990), Tippett and Whittington (1995),
Whittington and Tippett (1999), Ioannides et al. (2003), Peel et
al. (2004), and McLeay and Stevenson (2009). This is
particularly relevant to the use of scaled accounting variables
in panel analysis. The scaling issue has been addressed also in
the context of equity valuation modelling – see Ataullah et al.
(2009) for a recent discussion.

5 To demonstrate this point, Dechow et al. (2003) compare a
sample of firms that report earnings in the vicinity of zero and
find more small profits in firms that have been listed for two
years or less, and that those firms reporting small losses appear
significantly larger in size than those reporting small profits.

6 Kahneman and Tversky (1979) propose an S-shaped
reflection effect that is concave for profits and convex for
losses on the basis that ‘the aggravation that one experiences in
losing a sum of money appears to be greater than the pleasure
associated with gaining the same amount’ (p. 279).
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mentals of the population.7 This consideration is
deeply rooted in statistical modelling, and it is the
type of behaviour that we suspect we are dealing
with here. In particular, if the earnings probability
density function (PDF) is part of the non-normal
class of densities, then the asymptotic Gaussian
assumptions that are commonplace in earnings
research are insufficient.

3. A model of scaled earnings with bounded
variation
Consider the non-negatively distributed integers
x; y; z � 0f g with a distribution of unknown char-
acter and let these be associated as follows:

zit ¼ xit � yit ð1Þ
with i=1,2, . . . ,I and t=1,2, . . . ,T, so that it indicates
an observation from an N=I6T sample. Now, to
standardise with bounded variation, divide by
xit þ yit:

zit
xit þ yit

¼ xit � yit
xit þ yit

ð2Þ

where xit þ yit=0 and xit � yit½ � � xit þ yit½ �. By
separating the right-hand side of Equation (2) into
two distinct fractions as follows:

zit
xit þ yit

� �1
�1

¼ xit
xit þ yit

� �1
0

� yit
xit þ yit

� �1
0

ð3Þ

it is evident that the [–1,1] boundary conditions on
the left-hand side are induced because xit and yit are
components of the common denominator xit þ yit.
It follows that the standardised sample space [–1,1]
is defined by the difference between two [0,1]
integrals.

Now consider the general case for any firm, in
any accounting period, where expenditure is
incurred in the process of generating revenues,
resulting in its most basic form in the following
accounting identity:8

Earnings:Sales� Costs ð4Þ
At the primary level of aggregation, each of these
two variables is a non-negative economic magni-
tude. This statement may at first seem counter-
intuitive in the context of the double entry system,

but is clearly evident in the negative operator in
Equation (4). The sign is incorporated as an
exogenous constraint, and as a result the Earnings
variable can take any value on the real number line
(i.e. as either profits or losses). In this paper, we
exploit this natural positive variability in account-
ing aggregates in order to derive a scaled form of
earnings. Applying the model described in Equation
(2) to the difference between Sales and Costs, and
deflating by the total magnitude of the two, we
derive the variable of interest in this paper, Scaled
Earnings E0, as follows:

E
0 ¼ Earnings

Salesþ Costs
¼ Sales� Costs

Salesþ Costs
ð5Þ

By giving mathematical support to the range of
variability in this way, Equation (5) transforms
Earnings into a measure of proportionate variation.9

That is to say, at the limit, when Sales (Costs) equal
zero, then it follows that E0 will be equal to minus
(plus) one. Over this range, E0 will be distributed in
the following manner:

E
0 ¼ Sales� Costs

Salesþ Costs

�1 when Sales ¼ 0

< 0 when Sales < Costs

¼ 0 when Sales ¼ Costs

> 0 when Sales > Costs

þ1 when Costs ¼ 0

8>>>>><
>>>>>:

ð6Þ

Thus, with profitable returns on a scale above 0% to
100%, and negative returns below 0% to �100%,
Scaled Earnings E0 can be interpreted as a percent-
age return on the total operating size of the firm,
where size is measured in terms of the magnitude of
all operating transactions that take place within a
financial year.10 The effect of scale will appropri-
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7 See Cobb et al. (1983) for the statistical justification for
treating non-normality as the general case, and symmetry as a
special case.

8 Here, the analysis is deliberately simple, although it is well
known that Earnings may be described as a more complex
summation. For example, it is the case that most firms also
generate other types of revenue in addition to their Sales. Yet the
same result applies if, for instance, Earnings were to be defined
more comprehensively as the difference between all revenues
and all expenditures, rather than just between Sales and Costs.

9 As discussed earlier, it is usual in financial analysis to scale
measures of profitability and performance by size variables,
such as the number of outstanding shares, the market value or
the beginning-of-the-year total assets, which tend to be selected
in an ad hoc manner. Scaling in this way is intended to deal with
issues arising from sample heterogeneity, mostly resulting
through composite size biases, while the use of a lagged size
measure can help to mitigate the autocorrelation problem. A
sensitivity analysis on the sample employed in this study
verifies that the deflator Sales+Costs is highly correlated with
other commonly used size measures, including the market
value, a figure which is not taken from the financial statements
(for our sample, the coefficient of correlation between Sales
+Costs and market value is 0.8303).

10 As E0 is the index of two variables that are measured in
terms of the same numeraire, the scaled earnings variable that is
proposed here is a numeraire-independent quantity. Another
interesting property is the one-to-one correspondence between
the components of Scaled Earnings. By denoting E0=Earnings/
(Sales+Costs), S0=Sales/(Sales+Costs) and C0=Costs/(Sales
+Costs), and recognising that S0+C0=1, then by applying
expectations operators E(.), the following theoretical properties
can be seen to hold: expected means mE0 ¼ mC0 � mS0 ; standard
deviations sE0 ¼ 2sS0 ¼ 2sC0 ; skewness b1E0 ¼ b1S0 ¼ �b1C0 ;

Vol. 39, No. 4. 2009 351

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



ately increase as Sales and/or Costs deviate from
zero, dramatically shrinking the tails of earnings
without the need to eliminate extreme observations.
Furthermore, with known boundaries, the sym-
metry of E0 is no longer a desired property.
Trigueiros (1995) generalises this argument by
showing that, when any accounting aggregate
following a process of exponential growth is
divided by another, the scaled variable will be
characterised not by symmetry but by skewness.11

As a final point, it should be considered here how
scaling by Sales plus Costs might compare with
scaling by Sales alone. Formally, it is the case that
�1 ≤ (Sales–Costs)/(Sales+Costs) ≤ 1 whilst
–∞ < (Sales–Costs)/Sales ≤ 1, and the relationship
between these two measures is distinctly nonlinear
– a concave function with no point of inflection.
Indeed, the rate of change in the two measures is
similar at one point only, when Costs are 41% of
Sales.12 Furthermore, there are only two points at
which the two measures give an identical result, i.e.
at breakeven when Sales and Costs are equal, where
(Sales–Costs)/(Sales+Costs) = (Sales–Costs)/Sales
= 0, and in the extreme case of zero Costs, where
(Sales–Costs)/(Sales+Costs) = (Sales–Costs)/Sales
= 1. Of course, when Sales = Costs = 0, the
company will have ceased operating. As mentioned
earlier, the standardised range of E0 is a particularly
useful property of the Scaled Earnings variable,
whilst scaling by Sales alone results in an infinite
left-hand tail and generates outliers accordingly.
Moreover, as a scalar, Sales fails the Durtschi-
Easton test, being systematically lower for loss
observations than it is for profit observations. In
other words, losses tend to be associated with lower
outputs than expected. In contrast, the scalar
proposed here, Sales+Costs, corrects for this bias
because losses are attributable not only to falling
Sales but also to increasing Costs. That is, whilst
Sales+Costs = 26 Sales = 26 Costs at breakeven
point, Sales+Costs is greater than 2 6 Sales (but

lower than 2 6 Costs) when there is a loss, and
lower than 2 6 Sales (but greater than 2 6 Costs)
when there is a profit.

4. A generalised probability function for
scaled earnings
It is argued above that, given the bounded character
of profitability, and the expectation of population
asymmetry about zero, the normal distribution is
inappropriate for describing Scaled Earnings E0.
Nevertheless, it is possible to express the standard
normal integral z*Nð0; 1Þ as a function g(.) of the
unknown distribution of E0 conditional on a set of
parameters ω, so that z ¼ gðE0 joÞ. Following
Johnson (1949), E0 may be expressed as a linear
approximation to the standard normal z, conditional
on o ¼ x; l; g; df g with location ξ, scale λ and
shape parameters γ and δ, as follows:

z ¼ gþ d f
E

0 � x
l

� �
; where d; l > 0: ð7Þ

Recalling that the boundary conditions for the
Scaled Earnings variable E0 are known to be [–1,1],
it is evident that, as E0 shifts location from the lower
bound ξ= –1 to the upper bound ξ+λ=1, resulting in
scale λ=2, E

0 þ 1
� �

=2will relocate from 0 to 1, with
g and d giving shape to the distribution. It follows
that a suitable translation of f(.) in Equation (7) is
the logit function

ln E
0 � x

� 	
= xþ l� E

0
� 	� 	

¼ ln E
0 þ 1

� 	
= 1� E

0
� 	� 	

which increases monotonically from –∞ to ∞ as
E

0 þ 1
� �

=2 increases from 0 to 1. Thus, the bounded
function for E0 belongs to the particular class of
Johnson bounded distributions that are described in
Equation (8) (see box below),
where gþ d ln E

0 þ 1
� �

= 1� E
0� �� � ¼ z*N 0; 1ð Þ

is now a reasonable approximation to the standard
normal conditional on the estimation of γ and δ, and
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F E
0 jx ¼ �1; l ¼ 2; g; d

� 	
¼ dffiffiffiffiffiffi

2p
p 2

E
0 þ 1ð Þ 1� E

0ð Þ exp � 1

2
gþ d ln

E
0 þ 1

1� E
0

� �� �2
( )(

ð8Þ

12 Applying the quotient rule u/v0 = (u0v- uv0)/v2 to the
differentiation of (Sales–Costs)/(Sales+Costs) with respect to
Sales, so that u = Sales–Costs with u0 = 1 and v = Sales+Costs
with v0 = 1, the first derivative is equal to (v–u)/v2 = 26Costs/
(Sales+Costs)2. Similarly, differentiating (Sales–Costs)/Sales
with respect to Sales gives Costs/Sales2. To obtain the unique
point where the two functions have the same sensitivity to Sales,
we set the two derivatives equal, and find that Costs = (√2–1)6
Sales ≈ 0.416Sales. That is to say, the rate of change in the two
functions is equal at the point where Costs is equal to 41% of
Sales. We are grateful to Jo Wells for suggesting this solution.

kurtosis b2E0 ¼ b2S0 ¼ b2C0 ; and product-moment correlations
rE0

S
0 ¼ �rE0

C
0 ¼ �rC0

S
0 ¼ 1. Note that these results may also

be obtained from the identities: S0/(S0+C0) = 1– C0/(S0+C0) and
(S0–C0)/ (S0+C0) = 2S0/(S0+C0)–1 = 2C0/(S0+C0).

11 The proponents of multiplicativity in accounting variables
include, amongst others, Ijiri and Simon (1977), Trigueiros
(1997) and Ashton et al. (2004). This notion is commonplace in
the industrial economics literature, where firm size (generally
proxied by sales) is treated as a stochastic phenomenon arising
from the accumulation of successive events (see the influential
work of Singh and Whittington, 1968).
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where E0 may take values within the specified range
but not the extremevalues�1and1. It is important to
note that Equation (8) describes distributions with
high contact at both ends, and guarantees the
finiteness of all moments. Furthermore, it has the
ability to accommodate frequencies that may take
anysignofskewnessandanyvalueofkurtosis,which
may also be decentralised or bimodal. Another point
of interest is that, if E0 is distributed in a symmetrical
manner, then Equation (8) will not alter the sym-
metry,whereas other types of transformation usually
have an adverse effect.13

As for recovering the parameters of Equation (8),
it is known that maximum likelihood estimation is
oversensitive to large values of higher-order
moments when there is high concentration around
the mean (Kottegoda, 1987). As a preliminary
investigation of the shape of Scaled Earnings
suggests that we must expect particularly concen-
trated peakedness, we use here the more flexible
fitting method of least squares, originally developed
by Swain et al. (1988), which is known to yield
significantly improved fits (Siekierski, 1992; Zhou
and McTague, 1996). Additionally, it provides for
the option to estimate with even narrower limits for
x > �1 and/or xþ l < 1, if the empirical data
suggest this. Details of the proposed steps for
recovering the parameters are provided in the
Appendix.

5. Examining the shape of scaled earnings
In this paper, in addition to the histogram, we also
employ a more flexible nonparametric tool – the
kernel density estimator – in order to obtain a
smoothed representation of the shape of Scaled
Earnings E0. As this appears to be a new approach in
the context of earnings analysis, a brief overview is
provided here in order to set out the main advan-
tages over the histogram.

Kernel density estimation arranges the ranked
observations into groups of data points in order to
form a sequence of overlapping ‘neighbourhoods’
covering the entire range of observed values. Each
localised neighbourhood is defined by its own focal
mid-point m, and the number of data points in any

neighbourhood depends on the selection of a band-
width b. Thus, for the continuous randomvariableE0
with independent and identically distributed (IID)
observations, the kernels constituting the estimator
are smooth, continuous functions of the overlapping
neighbourhoods of observed data, and the kernel
density estimator is defined as a summation of
weighted neighbourhood functions as follows:

f̂ E
0

� 	
¼ 1

Nb

XN
it¼1

K
E

0
it � E

0
m

b

� �
ð9Þ

for it=1,2, . . . ,N firm-year observations,
m=1,2, . . .<N mid-points of neighbourhoods with
bandwidth b, and a kernel density function K that
integrates to one.14

It can be shown that the histogram estimator is a
limiting case of Equation (9). The histogram is a
function of a fixed number of non-overlapping bins,
and lacks flexibility by comparison with the kernel
estimator as an equally weighted kernel function
K=1 is implied for all observations. The resulting
estimation is neither smooth nor continuous, and, as
demonstrated earlier in Figure 1, the histogram can
be particularly misleading for frequencies with
significant localised variability.

For the more flexible kernel density estimator, we
are faced with the following trade-off: the wider the
bandwidth b, the smaller the number of estimates of
K. Since the range of E0 is standardised, the
neighbourhood mid-points m are spaced from �1
to 1. At the limit, for b=2, only one symmetrical
kernel about zero is implied, while as b→0 the
number of kernels increases. The selection of
bandwidth is of critical importance therefore, as it
defines the number of observations required for
estimation with respect to each focal mid-point.
Since the ultimate aim here is to examine localised
variability surrounding zero earnings, our choice of
the Parzen kernel function K together with
Silverman’s rule of thumb regarding bandwidth b
provides the level of detail in representation that is
required.15

13 Previous studies have also employed generalised non-
normal distributions for describing frequencies of scaled
accounting variables (ratios). For example, Lau et al. (1995)
suggest the Beta family and the Ramberg-Schmeiser curves; and
Frecka and Hopwood (1983) the Gamma family of distribu-
tions. By comparison to the Johnson, these are subordinate
bounded systems that can only handle a limited shape of curves.
Note also that the non-existence of moments in the distributions
of scaled accounting variables causes severe problems when the
transformed variable is used in multivariate statistical analysis
(Ashton et al., 2004).

14 The kernel density estimator in Equation (9) was originally
proposed by Rosenblatt (1956). For a further description and a
detailed bibliography of nonparametric density estimation, see
Härdle (1990) and Pagan and Ullah (1999); on the choice
between kernels K, see Müller (1984).

15 For zit ¼ ðE0
it � E

0
mÞ=b, the Parzen (1962) kernel weight-

ing is as follows:

K zit½ � ¼ 4=3� 8z2it þ 8jzitj3
� 	

Vjzitj � 1=2
n o

;

8 1� jzitjð Þ3=3
� 	

V1=2 < jzitj � 1
n o

;
n
0Vjzitj > 1

o
:

Silverman’s rule of thumb requires that the mean squared error
is minimised during the selection of bandwidth b, under the
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6. Analysis
The sample consists of listed companies in the EU
and the US, covering the time period 1985–2004.
We include all firms listed during this period,
whether active or inactive at the census date, and to
ensure comparability with previous studies such as
Durtschi and Easton (2005) and Beaver, McNichols
and Nelson (2007), we eliminate all financial, utility
and highly regulated firms (SIC codes between
4400–4999 and 6000–6999), leaving 54,418 usable
firm-year observations for the EU and 140,209 for
the US.16 This selection of non-financial and non-
utility firms is also appropriate given the operating
orientation of the Scaled Earnings expression in
Equation (5). The financial statement data for the
EU has been collected from Extel, and the calcu-
lation of Scaled Earnings is based on Extel items
EX.NetIncome (after tax, extraordinary and unusual
items) and EX.Sales, with Costs = EX.Sales – EX.
NetIncome. The US data is taken from Compustat,
using item 12 for Sales and item 172 for Net
Income, again with Costs as the difference between
the two.

With regard to extreme observations, as
explained above, we consider these to be charac-
teristic of accounting data. Yet, in financial research,
it is commonplace to remove such observations as
outliers even though, paradoxically, the hypothe-
sised distribution is often assumed to have infinite
tails.17 In contrast, a density with known support,
such as that of Scaled Earnings E0, does not justify
the elimination of data that lie close to the tail-end.
For E0, the true extremities lie exactly at the limits of
the function, that is, at E0= –1 where Sales=0 and at
E0=1 where Costs=0. Figure 2 shows the extent of
the concentration of the pooled dataset at these
limits, highlighting the observations with zero Sales
on the left (807 for the EU and 4,799 for the US) and

those with zero Costs on the right (524 for the EU
and 1,176 for the US).18 For further analysis, we
exclude these observations as they represent firm-
years with truly extreme reporting behaviour.
Indeed, with regard to parametric density fitting,
they represent data points that make no contribution
to the surrounding local variability and therefore are
an artificial source of multi-modality.

The final working sample comprises 53,087
firm-year observations for the EU and 134,234 for
the US. Table 1 provides summary statistics, both
for losses and for profits. In each location, the
standard deviation of losses (0.2308 in the EU and
0.2772 in the US) can be seen to be far greater than
that of profits (0.0521 in the EU and 0.0651 in the
US). Figure 2 helps us to understand why it is that
losses are more variable than profits. The bounded
transformation of Net Income into Scaled Earnings
reveals that losses are inclined to populate their
entire permissible region, while this is not the case
with respect to profits. Indeed, we find that there is
only a very small likelihood that E0 might exceed
0.5, at which point Sales would be more than three
times larger than Costs. This asymmetry in the tails
is reflected in the distribution of losses and profits
around zero, as shown in Figure 2 by the
frequencies in the central percentile. By looking
more closely in the vicinity of zero in this way, it is
clear that what has been characterised previously
as a shortfall in small loss observations appears to
be attributable to asymmetry defined by point zero,
which is consistent with the fact that the tail
densities are much greater for losses than for
profits. This asymmetric tendency is further
reflected in the medians for losses and for profits
reported in Table 1 (EU median loss �0.0433,
median profit 0.0223; US median loss �0.1009,
median profit 0.0264).

Table 1 also gives a breakdown of the EU sample
by member state, based on the location in which
each of the firms is domiciled. In most of the smaller
sub-samples (Austria, Finland, Greece, Ireland,
Luxembourg and Portugal), we find that the min-
imum and/or the maximum of observed Scaled
Earnings is far from the respective sample limit of
either �0.9999 or 0.9999 (i.e. excluding zero Sales
and zero Costs). In the larger jurisdictions, however,

criterion b ¼ ð0:9=N1=5Þ6min s; IQR=1:349f g where σ is the
sample standard deviation and IQR the inter-quartile range
(Silverman, 1986; Salgado-Ugarte et al., 1995).

16We also excluded a number of observations relating to
German firms that habitually reported zero Net Income by
adjusting their depreciation expenses and reserves accordingly.
In this respect, 127 firm-year observations relating to 32 firms
domiciled in Germany were deemed not to be usable. Degeorge
et al. (1999) point out that break-even firms such as these will
emphasise the discontinuity at zero, as scaling disperses non-
zero earnings observations but not those which are exactly zero.

17 It is shown elsewhere, in McLeay and Trigueiros (2002)
and Easton and Sommers (2003), for instance, that the deflation
of earnings commonly leads to a number of extreme observa-
tions which, once removed, give way to other observations that
take their place as new outliers. Indeed, Easton and Sommers
(2003) examine the multivariate distribution of market capital-
isation, book value and net income and find that up to 25% of the
sampling distribution would have to be removed to deal with the
statistical problems arising from outliers.

18 The number of firms reporting zero Costs at least once is as
follows: EU 212, US 797; more than once: EU 102, US 207.
Those reporting zero Sales at least once is: EU 331, US 1,785;
more than once: EU 170, US 1,019. The reporting of zero Costs
appears to be unrelated to corporate domicile or industry,
whereas this is not the case for zero Sales firm-year observations
(i.e. in mineral, oil and gas extraction [SIC 1000–1499]: EU
385, US 1141; in pharmaceutical preparations, medicinal and
biological products [SIC 2830–2839]: EU 69, US 856).
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where markets are deeper and data are not sparse,
the frequencies of Scaled Earnings tend to cover the
full range. It can be seen from Table 1 that the skew
estimate is consistently negative in the larger
jurisdictions, at levels that reflect the estimate of
�3.6691 for the EU sample as a whole. Finally, the

kurtosis of the observed frequencies is high in all
sub-samples, reflecting not only the concentration
around the mean but also the finiteness of tails,
particularly for profits (see Balanda and
MacGillivray, 1988). Allowing for the distorting
effect of small sub-sample size on some estimates,

Figure 2
Limits to the distribution of scaled earnings

Note: The y-axis labels indicate the number of observations at the limits of the function (i.e. EU zero Sales 807,
EU zero Costs 524; US zero Sales 4,799, US zero Costs 1,176). Each histogram is plotted from n firm-year
observations, with bin width b and 30 bins. The origin for each histogram is set to the left-hand limit.

Vol. 39, No. 4. 2009 355

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



T
ab

le
1

F
in
al

sa
m
p
le
an

d
su
m
m
ar
y
st
at
is
ti
cs

P
oo
le
d
fo
r

O
bs
er
va
tio

ns
Su
m
m
ar
y
st
at
is
tic
s
fo
r
sc
al
ed

ea
rn
in
gs

19
85

–
20
04

L
os
se
s

P
ro
fi
ts

To
ta
l

M
in
im
um

M
ea
n

M
ed
ia
n

M
ax
im
um

St
an
da
rd

de
vi
at
io
n

Sk
ew

K
ur
to
si
s

E
U

12
,1
38

40
,9
49

53
,0
87

–
0.
99
99

–
0.
00
77

0.
01
52

0.
99
99

0.
14
20

–
3.
66
91

24
.4
57
1

E
U
P
ro
fi
ts

40
,9
49

0.
00
05

0.
03
40
4

0.
02
23

0.
99
99

0.
05
21

E
U
L
os
se
s

12
,1
38

–
0.
99
99

–
0.
14
86

–
0.
04
33

–
0.
00
00

0.
23
08

U
S

55
,9
31

78
,3
03

13
4,
23
4

–
0.
99
98

–
0.
07
12

0.
00
74

0.
99
99

0.
22
99

–
2.
16
89

8.
32
59

U
S
P
ro
fi
ts

78
,3
03

0.
00
00

0.
04
33

0.
02
64

0.
99
99

0.
06
51

U
S
L
os
se
s

55
,9
31

–
0.
99
98

–
0.
23
15

–
0.
10
09

–
0.
00
00

0.
27
72

E
U
,b

y
m
em

be
r
st
at
e

A
u
st
ri
a

19
2

75
6

94
8

–
0.
78
15

0.
01
84

0.
01
12

0.
90
15

0.
11
61

2.
82
07

33
.5
81
5

B
el
gi
u
m

25
0

91
4

1,
16
4

–
0.
95
03

0.
00
88

0.
01
24

0.
99
99

0.
10
98

–
1.
48
82

45
.3
78
9

D
en
m
ar
k

24
9

1,
23
0

1,
47
9

–
0.
99
76

0.
00
87

0.
01
54

0.
95
59

0.
10
37

–
4.
60
65

54
.6
66
6

F
in
la
n
d

16
5

77
5

94
0

–
0.
99
95

0.
01
27

0.
01
52

0.
33
09

0.
06
58

–
5.
57
59

76
.7
92
2

F
ra
n
ce

1,
51
9

6,
00
9

7,
52
8

–
0.
99
20

0.
00
64

0.
01
38

0.
98
19

0.
09
66

–
3.
71
71

46
.3
56
9

G
er
m
an

y
1,
32
0

4,
44
8

5,
76
8

–
0.
99
68

–
0.
00
34

0.
00
76

0.
99
18

0.
08
94

–
4.
08
41

43
.4
74
0

G
re
ec
e

13
4

71
6

85
0

–
0.
90
78

0.
02
74

0.
02
40

0.
70
55

0.
08
42

–
0.
38
89

40
.7
50
6

Ir
el
an

d
25
8

70
8

96
6

–
0.
98
99

–
0.
04
86

0.
01
89

0.
75
26

0.
22
01

–
2.
55
92

9.
78
84

It
al
y

50
1

1,
69
4

2,
19
5

–
0.
99
96

0.
00
73

0.
01
35

0.
99
99

0.
08
89

–
4.
24
63

61
.8
06
8

L
u
xe
m
b
ou

rg
27

87
11
4

–
0.
29
01

0.
02
36

0.
01
76

0.
38
72

0.
07
39

0.
66
56

11
.8
58
4

N
et
h
er
la
n
d
s

34
1

2,
00
9

2,
35
0

–
0.
98
52

0.
01
19

0.
01
62

0.
82
44

0.
07
69

–
5.
90
90

76
.2
13
3

P
or
tu
ga
l

47
22
5

27
2

–
0.
58
68

0.
01
74

0.
01
47

0.
35
33

0.
08
63

–
1.
64
97

21
.1
79
9

S
p
ai
n

18
4

1,
17
7

1,
36
1

–
0.
80
78

0.
03
18

0.
02
10

0.
90
88

0.
07
97

0.
27
27

33
.9
16
2

S
w
ed
en

37
2

1,
43
2

1,
80
4

–
0.
99
78

–
0.
00
04

0.
01
72

0.
96
83

0.
13
32

–
3.
20
69

27
.2
61
8

U
K

6,
57
9

18
,7
69

25
,3
48

–
0.
99
99

–
0.
02
21

0.
01
83

0.
98
47

0.
17
37

–
3.
21
41

16
.1
89
4

N
ot
e:

T
he

fi
na
l
w
or
ki
ng

sa
m
pl
e
is
fr
ee

fr
om

ze
ro

S
al
es

an
d
ze
ro

C
os
ts
;
ze
ro

E
ar
ni
ng
s
(A

us
tr
ia
2,

F
ra
nc
e
2,

S
pa
in

5,
U
K

8,
U
S
26
)
ar
e
in
cl
ud
ed

w
ith

P
ro
fi
ts
fo
r
th
is

ta
bu
la
tio

n.
T
he

m
ea
su
re
s
of

sk
ew

an
d
ku
rt
os
is
ar
e
no
n-
st
an
da
rd
is
ed

–
gi
ve
n
th
e
rt
h
ce
nt
ra
l
m
om

en
t
m
r=
1/
nS

(x
i–
x m

ea
n
)r
fo
r
i=
1,
2,
..
.,
n,

th
en

sk
ew

ne
ss

is
de
fi
ne
d
as

m
3
m
2
–
3
/2
an
d
ku
rt
os
is
as

as
m
4
m
2
–
2
.

356 ACCOUNTING AND BUSINESS RESEARCH

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



F
ig
u
re

3
D
en
si
ty

es
ti
m
at
io
n
fo
r
sc
al
ed

ea
rn
in
gs
,b

y
ju
ri
sd
ic
ti
on

Vol. 39, No. 4. 2009 357

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



F
ig
u
re

3
D
en
si
ty

es
ti
m
at
io
n
fo
r
sc
al
ed

ea
rn
in
gs
,b

y
ju
ri
sd
ic
ti
on

(c
on
tin

ue
d)

358 ACCOUNTING AND BUSINESS RESEARCH

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



F
ig
u
re

3
D
en
si
ty

es
ti
m
at
io
n
fo
r
sc
al
ed

ea
rn
in
gs
,b

y
ju
ri
sd
ic
ti
on

(c
on
tin

ue
d)

N
ot
e:

T
he

bl
ac
k
lin

e
is
th
e
ke
rn
el
de
ns
ity

es
tim

at
or

of
E
0 d
efi
ne
d
by

th
e
P
ar
ze
n
(1
96
2)

ke
rn
el
fu
nc
tio

n
w
ith

th
e
S
ilv

er
m
an

(1
98
6)

ba
nd
w
id
th
,t
he

do
tte
d
cu
rv
e
is
a
no
rm

al
de
ns
ity

N
(μ
,σ
)
fi
tte
d
on

th
e
re
sp
ec
tiv

e
sa
m
pl
in
g
m
om

en
ts
(s
ee

Ta
bl
e
1)
,a
nd

th
e
gr
ey

cu
rv
e
is
th
e
fi
tte
d
bo
un
de
d
di
st
ri
bu
tio

n.
T
he

sa
m
pl
es

ar
e
fr
ee

fr
om

ob
se
rv
at
io
ns

w
ith

ze
ro

S
al
es

an
d
ze
ro

C
os
ts
.T

he
y-
ax
is
la
be
ls
in
di
ca
te
th
e
m
ax
im

um
pr
ob
ab
ili
ty

de
ns
ity
.(
0,
0.
25
)/
(0
,1
)
an
d
(–
0.
25
,0
)/
(–
1,
0)

in
di
ca
te
th
e
pe
rc
en
ta
ge

of
no
n-
vi
si
bl
e
pr
ofi

ta
nd

no
n-
vi
si
bl
e
lo
ss

ob
se
rv
at
io
ns

to
th
e
to
ta
l
nu
m
be
r
of

pr
ofi

ts
an
d
lo
ss
es
,r
es
pe
ct
iv
el
y.

Vol. 39, No. 4. 2009 359

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
s 

D
ia

n 
N

us
w

an
to

ro
],

 [
R

ir
ih

 D
ia

n 
Pr

at
iw

i S
E

 M
si

] 
at

 1
9:

20
 2

9 
Se

pt
em

be
r 

20
13

 



there is remarkable consistency in earnings behav-
iour across the EU.

This is evident in Figure 3, which juxtaposes the
three density estimators of Scaled Earnings: the
nonparametric Parzen kernel estimator, the bounded
distribution (solid smoothed line) and the normal
(dotted smoothed line). Each of these is fitted to the
EU and US samples, and separately for each of the
15 member states of the pre-enlargement EU.While
estimation is applied to the entire space of E0, i.e.
[min,max] for the kernel estimator and the normal
and [ξ,ξ+λ] for the bounded distribution, the graphs
reproduced here focus on the interval [–0.25,0.25]
in order to assist visual inspection about point zero.
The consistently asymmetric shape of Scaled
Earnings across the different jurisdictions is appar-
ent in these plots, suggesting that Ijiri’s (1965)
characterisation of the zero point in accounting
earnings as the modulator of asymmetry remains
valid.

This asymmetric tendency in earnings can be
further understood by looking at the asymmetric tail
concentration between losses and profits, as
reported by Figure 3. That is, in each separate
plot, the concentration of out-of-range profit obser-
vations, for which E0 > 0.25 is given as a
percentage of the total number of profit observa-
tions, and the same approach is taken in order to
calculate the concentration of out-of-range losses
for E0 < �0.25. It can be seen that, for both the EU
and the US, the proportion of loss observations for
which E0 is less than�0.25 (EU 18.9%, US 31.6%)
greatly exceeds the proportion of profit observa-
tions for which E0 is greater than 0.25 (EU 0.9%, US
1.5%). This pattern is repeated in all of the member
states confirming that, in all jurisdictions, loss
observations tend to occur throughout their entire
permissible region whereas profits do not, leading
us to conclude that the asymmetry around its
defining point of zero is a universal property of Net
Income.19

Figure 3 also shows that the unbounded normal
distribution fails systematically to fit the observed
frequencies, which is not surprising given the
inability of the Gaussian function to take into
consideration the higher order moments that are
required to define the general shape of earnings. The
lack of fit in the case of the US provides a good
illustration of the way in which the heavier tail
density for losses shifts the normal’s estimated point
location downwards and away from the empirical
mode. In all samples, there is considerable over-
fitting in the shoulders of the distribution, which
arises because the normal cannot model the high
peakedness that is characteristic of earnings.20 In
contrast, the bounded distribution is able to accom-
modate much of the shape of Scaled Earnings, in
line with the description provided by the kernel
density estimator. The Lagrange Multiplier test
reported in Table 2 verifies that the deviance
between the fit of Equation (8) and the observed
data is significantly less than in the case of the
normal fit (the test is described in the Appendix).

A parametric description of the scaled earnings
distribution
Table 2 gives the recovered lower bound ξ, upper
bound λ, scale ξ+λ, and shape parameters γ and δ,
for the EU and US samples and additionally by
member state of the EU. Table 2 also provides the
fitted point estimates for the mean m

0
1ðE

0 Þ, the
median E

0
0 and the mode E

0
M, as well as the

standardised median value ðE0
0 � xÞ=l ¼

1þ exp g=dð Þð Þ�1 and the proportional distance of
the median and mode from the mean
d ¼ E

0
0 � m

0
1ðE0 Þ� �

= E
0
M � m

0
1ðE0 Þ� �

.
For the bounded space of E0, the optimisation

process yields exact fits to the theoretical lower
bound of reporting zero Sales (E0= –1) and to the
theoretical upper bound of reporting zero Costs
(E0=1), both for the single European market and the
US. For the smaller subsamples by member state of
the EU, the parametric fits take advantage of as
much of the permissible range of variation as
possible, as the iterative routine simultaneously
solves for all parameters. These numerical results
yield bounds of E0 that are theoretically sound, the

19 We have also applied Equation (5) to operating income and
pre-tax income. The results, which are not tabulated in the paper,
show that the concentration around zero and the distribution
across the bounded range of variation are each sensitive to the
level of income that is used. For scaled operating income, the
distribution extends more smoothly to both tails and also passes
through zero less abruptly. In the case of scaled pre-tax income,
the inclusion of non-operating and transitory items, and prior
period value adjustments, tends to increase the probability of a
scaled profit and induces a more uniform allocation of scaled
losses over their range. Finally, it is only with scaled net income,
which takes account of all tax-related charges, plus minority
interests and preferred dividend payments, that zero emerges
clearly as the defining point of asymmetry in E0, with the tax-
effect mainly pulling profits away from the right-hand limit
towards zero. Additional sensitivity analysis was also per-
formed on the aggregation of all revenue items in addition to

sales, and the results suggest that the distributional shape of
(Revenues – Expenditures) / (Revenues + Expenditures) is
similar to that of the more narrowly defined (Sales – Costs) /
(Sales + Costs) reported in the paper.

20 An additional test (Shapiro-Wilk-Royston), which is not
tabulated in the paper, is overwhelmingly in favour of non-
normality. Results by industry show that the industry factor to be
much less influential than jurisdiction in shaping localised
variability, with the exception of some observable differences
between the cyclical and non-cyclical sectors of the economy.
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solution being independent from data points with
exact contact at the limits (as noted earlier, we
exclude observations with E0= –1 and E0=1).

We use the standardised median value
ðE0

0 � xÞ=l ¼ 1þ exp g=dð Þð Þ�1 to compare the
entire set of parametric fits x; l; g; df g across
samples. The standardised median represents a
sigmoid (or standard logistic) function of γ and δ,
with range [0,1] and a cut-off point of
1þ exp g=dð Þð Þ�1=0.5 when γ/δ=0. That is, for
γ=0 the fitted distribution is symmetric. In the case
of positive skewness, 1þ exp g=dð Þð Þ�1→0 as
γ/δ→∞, while for negative skewness,
1þ exp g=dð Þð Þ�1→1 as γ/δ→ –∞. The standard-
ised median estimates are remarkably similar, with
the exception of three relatively small member
states which have positive γ (Austria 0.4852,
Luxembourg 0.2418, and Spain 0.4922). For these
jurisdictions, positive γ seems to be appropriate and
simply reflects the range of their observed values
which, in contrast to the other subsamples, range
further over profits than losses (Austria: min= –
0.7815, max=0.9015; Luxembourg: min= –0.2901,
max=0.3872; Spain: min =�0.8078, max=0.9088).

The fitted mean, median and mode reported in
Table 2 are more robust than their nonparametric
counterparts reported in Table 1, the sample mean
and the sample median. Appropriately, these fitted
estimates are always positive, consistent with the
sign of expected earnings in a viable economy, and
the median always falls between the mean and the
mode and thus reflects the continuous unimodal
density that has been proposed. In contrast, the
sensitivity of the arithmetic average to extreme
values in the sample can be seen to lead to negative
sample means in both the EU (–0.0077) and US
(–0.0712).21 This is a severe shortcoming of relying
on nonparametric estimates – given the consider-
able number of firms and years involved, it would
be implausible that the most likely expected value
of earnings, in either the EU or the US, would be a
loss.

The fitted estimates of central tendency also
explain how the different tail weights give rise to

high density just above zero and negative skew.
This is a consistent result that becomes particularly
evident when we look at d, the distance of the
median from the mean E

0
0 � m

0
1ðE

0 Þ� �
expressed as

a percentage of the distance of the mode from the
mean E

0
M � m

0
1ðE

0 Þ� �
. This must be positive when

the median of a distribution falls between the mean
and the mode. Two inferences may be drawn from
the analysis of the proportional distance. First,
E

0
0 � m

0
1ðE

0 Þ� �
and E

0
M � m

0
1ðE

0 Þ� �
are always very

small (i.e. a difference is only observed at the fourth
decimal place), which reflects the high concentra-
tion just above zero as well as the expectation that
the most likely value is indeed a small scaled profit.
Second, there is a remarkable similarity in propor-
tional distance across subsamples, consistently
estimated close to 33%. In other words, the distance
between the mode and the median is twice as large
as the distance between the median and the mean in
all cases, even for subsamples that are positively
skewed, with expected concentration just above
zero following a consistent pattern throughout.

The model fitting diagnostics reported in the
final columns of Table 2 provide compelling
support for the Johnson transformation. The
Lagrange Multiplier test strongly favours the fit

Table 3
Filliben’s percentile correlation coefficient

Pooled for
1985–2004

Johnson
transformation

Normal
fit

EU 0.950 0.507
US 0.963 0.546

Austria 0.969 0.529
Belgium 0.962 0.572
Denmark 0.967 0.584
Finland 0.957 0.723
France 0.963 0.612
Germany 0.956 0.547
Greece 0.949 0.759
Ireland 0.968 0.453
Italy 0.950 0.682
Luxembourg 0.914 0.801
Netherlands 0.959 0.616
Portugal 0.906 0.715
Spain 0.963 0.550
Sweden 0.970 0.531
UK 0.969 0.529

Notes: The critical values are interpolated from
Vogel (1986) as follows: normal distribution:
0.978 (0.1%), 0.979 (0.5%), 0.981 (1%) 0.987
(5%); extreme value (Type I) distributions: 0.949
(0.1%), 0.952 (0.5%), 0.960(1%), 0.978 (5%).

21 Thefitted distributions complywith theDharmadhikary and
Joag-dev (1988) conditions, under which the median must fall
between themode and the mean for a finite continuous unimodal
distribution (see also: Basu and DasGupta, 1997; Bickel,
2003). These conditions ensure that mean≤median≤mode
under negative skewness, and that mean≥median≥mode under
positive skewness (as with the three EU sub-samples of
Austria, Luxembourg and Spain). This relationship does not
always hold for the sample mean and median, simply because
these are nonparametric results that are highly sensitive to
any form of abnormality (e.g. Greece mean=0.0274
> median=0.0240 but skewness= –0.3889; Netherlands
mean=0.0174 > median=0.0147 but skewness= –1.6497).
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of the bounded model to the observed data over the
fit of the normal to the same data (all p-values are
found to be less than 0.0001). The test, which is
specified in the Appendix (Equation A5), con-
verged on an optimal solution using standard
techniques in all cases except for the Luxembourg
subsample, which is by far the smallest (N=114)
and which is distributed empirically within a much
narrower range of variation. Finally, indicative
goodness-of-fit statistics for the Johnson trans-
formation and the normal are documented in Table
3, using an extension of Filliben’s quantile-
quantile correlation test. Standard goodness-of-fit
measures are designed for relatively small rando-
mised samples, whereas the commercial data sets
that are common in accounting research provide
population coverage, and therefore tend to be very
large. They require a different approach, especially
in order to compare across jurisdictions. Hence the
use here of the Filliben correlation test. If the
sample is distributed as hypothesised, we expect
the relation between the ordered cumulative
distribution function (CDF) to be linear with
respect to the theoretical CDF, and similarly for
the ith order statistics. In this case, the product
moment correlation between the percentiles of the
empirical cumulative frequencies and the theor-
etical cumulative frequencies provides the appro-
priate statistic, which has the advantage of being
applicable to distributions other than the normal
(Vogel, 1986; Heo et al., 2008). The results of this
indicative test show high association with the best-
fitting Johnson transformation (average 0.95, min-
imum 0.91) and much lower association with the
fitted normal (average 0.61, minimum 0.45).
Indeed, in all cases except the two smallest
samples, the hypothesis that the observed data
fits the Johnson transformation cannot be strongly
rejected, whereas for the normal distribution the
hypothesis is rejected outright.

The goodness-of-fit tests indicate the appropri-
ateness of the models that are fitted, and the
parametric analysis set out above validates our
claims for a consistently asymmetric shape of
earnings that is chiefly described by negative
skewness and high levels of concentration just
above zero. On the whole, there is little difference in
the shape of fitted densities across samples. More
specifically, it is shown how asymmetry in scaled
earnings is primarily defined by a longer tail for
losses and a shorter tail for profits, with zero acting
as Ijiri predicted, modulating the downwards pres-
sure not only on profits, which is evident in the high
density just above zero, but also on losses resulting
in lower concentration just below zero.

Is the asymmetry about zero a firm-specific effect?
Finally, we provide evidence that suggests that the
asymmetry in earnings may be a feature that is
predominantly introduced through firm-specific
heterogeneous effects. The income of firms in a
competitive environment will be attributable to the
characteristics of each entity but conditional in each
case on the firm’s relationship with the rest of the
market. If markets are complete, with perfect
information and homogeneity in the allocation of
resources, the reported firm profit in this frictionless
universe will be absent of incentives and other
stimuli that create asymmetry. We anticipate there-
fore, that once we remove the fixed effect that
defines firm-specificity, we will induce approximate
symmetry about zero. The standard approach in
panel methods is employed here, whereby the
arithmetic averages for each panel (in this case a
firm) are the fixed effects. Such effects are described
in modern microeconometric analysis as either
unobserved or unobservable, and they characterise
the between-panel heterogeneity in the pooled
sample (e.g. Cameron and Trivedi, 2005).

To examine this proposition, consider a more
comprehensive description of Scaled Earnings E

0

with fixed attributes for each firm i, for each of the
sectors s in which the sampled firms operate, for
each of the jurisdictions j in which they are
domiciled, and for each year t. The fixed attributes
are thus the firm mean Ē

0
i for i=1,2, . . . ,n, the sector

mean Ē
0
s where s denotes a two-digit SIC class, the

jurisdiction mean Ē
0
j where j denotes an EUmember

state, and the year-by-year mean Ē
0
t for each

t=1985,1986, . . . ,2004. By subtracting the arith-
metic average of the earnings stream with respect to
any one of these attributes, we effectively eliminate
the expected heterogeneous effect that is associated
with that particular trait. We then repeat the Parzen-
kernel estimation procedure with the mean-adjusted
data, in order to assess which, if any, of these
characteristics may cause the distribution to deviate
from symmetry.

Panel A of Figure 4 contrasts the kernel density
estimators of the pooled firm-year sample of Scaled
Earnings E

0
with the densities of observations that

are mean-adjusted by firm E
0 � Ē

0
i

� �
, by sector

E
0 � Ē

0
s

� �
, by year E

0 � Ē
0
t

� �
and, in the case of

the EU only, by jurisdiction E
0 � Ē

0
j

� �
. As we are

mainly interested in observing the distribution of
earnings around zero, the graph focuses on the
central five percentiles, i.e. over the range [–0.025,
0.025]. The effect is very noticeable in both the EU
and the US, suggesting that heterogeneity across
firms is the main cause of asymmetry in the pooled
samples. By comparison with the pooled data,
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where the standard deviation is σ = 0.1420 in the EU
and 0.2299 in the US, the mean-adjusted density at
the firm level shows considerably less variability
(σ = EU 0.0851, US 0.1287), which is not the case
for the other mean adjustments where the reduc-
tion in variability does not appear to be material
(by sector, σ = EU 0.1384, US 0.2134; by year,
σ=EU0.1398,US 0.2281; by jurisdiction in the EU,
σ = 0.1410 – see Figure 4).We test for the equality of
variances between the unadjusted frequencies and
the mean-adjusted frequencies using the Levene
(1960) Test for Homogeneity of Variance, which is a
robust test for non-normal frequencies.22 As shown
by the tabulation accompanying PanelAof Figure 4,
the results confirm that the variances are indeed
significantly different between the unadjusted and
the firm mean-adjusted frequencies, with p-values
less than 0.01%. On removing the other fixed effects
that are considered here, the level of dispersion tends
to remain statistically unalteredwith the exceptionof
the sector effect for the US, implying that, in the US,
there are stronger industry-specific effects than in the
EU (at least at the level of two digit SIC codes).23

The symmetry plots of Scaled Earnings at the
pooledandmean-adjusted levels inPanelBofFigure
4 show the distance from themedian of the observed
distribution. As can be seen, in both the US and the
EU, the pooled distribution is highly asymmetric, as
are the mean-adjusted densities with respect to time
and industry (and jurisdiction in the case of the EU),
but themean-adjusted distribution at the firm level is
extremely close to symmetry. In summary, the
induced symmetry in earnings that is achieved by
removing the heterogeneous fixed effect at the firm
level substantiates our earlier assertion that earnings
should not be viewed as a mixture of distributions
between firms that make losses and firms that make
profits. More importantly, it verifies the claim that
earnings asymmetry is attributable to firm-specific

factors, and again validates Ijiri’s notion that zero
acts both as a constraint and an objective for the
management of the firm, modulating asymmetry
between reported losses and profits.

Is it possible that this result arises just because the
variance in firm averages is considerably greater
than the variance in industry or year averages? This
is clearly a key issue for further research. This study
has demonstrated that symmetry can be approxi-
mated at the firm level, suggesting that the factors
that give rise to asymmetry are indeed firm-specific
and are not related to time, industry or jurisdiction.24

It should be noted, however, that we have applied a
time-invariant fixed-effects model to the firm-year
panel, without extending the analysis to random
effects or dynamic modelling. In our analysis, the
remaining disturbance varies with both firms and
years, and is treated as the IID random component.
Further investigation calls for the application of
more detailed panel methods of analysis. It is worth
emphasising here, by way of conclusion, how little
impact panel methods, even fixed effects models,
have had on accounting research to date. The
perceived need to delete the upper and lower
percentiles of observations (on the grounds that
they are possibly outliers) appears to be ingrained as
the standard approachwith cross-sectional methods,
and this surely places a major constraint on the
adoption of panel structures in accounting research –
the ad hoc removal of observations from firm-
specific time series is not consistent with robust
panel estimation. The bounded scalar proposed in
this paper goes some way towards resolving this
issue, as such ad hoc approacheswould then become
redundant. Clearly, more work is needed to untangle
the basic properties of accounting variables in firm-
year panel datasets.25

7. Concluding remarks
This paper is motivated by prior research that has
suggested a ‘discontinuity’ about zero in the

22 The Levene test examines the null of equality in variances.
For a variable X, with total sample size N, and sub-samples N1
and N2, the Levene test follows an F distribution with (1, N–2)
degrees of freedom and is defined as

L ¼ N� 2ð Þ
X2

j¼1
Nj W̄:j � W̄::

� 	2
=
X2

j¼1

XNj

i¼1
Nj W̄ij � W̄:j

� 	2� �
*Fa

1;N�2

where W̄ij ¼ X̄ij � X̄:j

��� ���, X̄:j is the arithmetic mean, W̄:j the

group means of W̄ij, and W̄:: the global mean of W̄ij (Brown and
Forsythe, 1974).

23 By removing the firm-median instead of the firm-mean, we
find that the transformation to symmetry and the reduction in
variance is even more powerful. This is not surprising, since the
distribution of earnings is fundamentally non-normal with
significant higher order moments. The heterogeneous firm-
specific effects described here play a decisive role in empirical
relationships involving accounting variables, as demonstrated in
the assessment of fixed and random effects in earnings
conservatism in Grambovas et al., (2006).

24 Exploratory simulations appear to confirm that asymmetry
is a firm-specific effect. For example, by randomising the real
data to form random firm-panels, e.g. of 10 or 20 years, from
which the mean is then deducted, it is evident that the mean-
adjusted frequencies remain highly asymmetric. This is the case
for random samples with similar sample properties to the
empirical observations, as defined earlier in footnote 10, and
suggests again that asymmetry is shaped predominantly by firm-
specific fixed effects and not random effects.

25 By way of introduction, we refer the reader to the panel
analysis of earnings in Grambovas et al., (2006), which provides
a detailed discussion of fixed and random effects models, and to
the panel analysis of ratios of two scalars in McLeay and
Stevenson (2008). Extending the discussion of fixed and
random effects into the context of econometric modelling of
accounting data opens up a wide agenda, including: the
presence of joint unit roots in accounting variable series, the
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distribution of accounting earnings, and recent
suggestions that the earnings scalar that is selected
may bias in favour of finding such discontinuities.
In the introduction, we have demonstrated how
previous research using a histogram estimator to
define the weights of observed probabilities may be
influenced by the way in which the observed data
are aggregated, as asymmetry in Scaled Earnings
observations around zero also tends to be accentu-
ated by the choice of histogram origin and bin
width.

To examine the shape of the distribution of scaled
earnings, in this paper we use both nonparametric
and parametric density estimators. The kernel
density estimator provides a detailed and unbiased
nonparametric description of localised variability,
which is independent from discrete choices on
groupings of data, and the Johnson bounded
distribution provides an appropriate parametric
model that is consistent with our scaling approach.
We begin the analysis of the earnings distribution by
proposing a simple bounded model, which scales
earnings over a restricted range of variability. This
model expresses earnings as the percentage return
on the total magnitude of transactions that flow
within a financial year, and has limits that are
defined by the extreme reporting behaviour of zero
Sales and zero Costs.26 The proposed model avoids

some of the statistical shortcomings usually arising
with earnings scalars, such as infinite variances and
extreme observations, and rotates around zero with
deviations restricted to no more than one standard
unit. Moreover, the scalar introduced in this paper,
Sales+Costs, will correct for this bias because losses
can be attributed not only to falling Sales but also to
increasing Costs.

Across two major economic regions, the EU and
the US, and bymember state jurisdictions within the
EU, both the nonparametric and parametric results
confirm a consistent pattern of non-normality in the
form of asymmetric expected variance between loss
and profit observations, with great concentration
just above zero. It is demonstrated in this paper that
the inherently non-normal pattern could be mainly
the result of firm-specific factors.

In the earnings management literature, expect-
ations based on assumptions of symmetry have led
to confusing statements along the lines that ‘there
are more small profit observations than expected
and fewer small loss observations than expected’,
leading to the interpretation of such findings as
prima facie evidence of earnings management.
However, in this paper, we argue against the null
hypothesis of a distribution that is smooth in the
region around zero, and instead expect an inherent
asymmetry in profits and losses.

setting of initial conditions for censored panels where expo-
nential growth is a characteristic of firm data, the placement of
autocovariance restrictions on variables resulting from double-
entry book-keeping, and the potential for non-linear systems,
error-correction features and structural equations that may
jointly represent a variable of interest and its scalar when these
are strictly linked by accounting identities.

26 The range of scaled earnings is [–1,1]. The extreme cases
are uncommon, but not ‘abnormal’, as there are real factors
underlying non-trading or nonproduction in a given period. The
causes of such extreme reporting behaviour are not analysed in
this paper. Nevertheless, the data used in this study are publicly
available, and therefore this phenomenon is readily observable:
a listing with the names of all of the sampled firms in the EU that
have reported zero Costs and/or zero Sales in the study period
may be obtained from the authors. Further work on understand-
ing the nature of zeros in accounting, and their treatment in
empirical analysis, would make a useful contribution to the
research literature.
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Appendix
Recovering the fitted parameters for scaled earnings
For a continuous variable E0 that is randomly drawn from an IID sample, then for known ξ= –1 and
λ=2 and the logit transformation git ¼ ln E

0
it � x

� �
=

�
xþ l� E

0
it

� �Þ, the maximum likelihood
estimates for the shape parameters of Equation (8) are ~d ¼ 1=sg and ~g ¼ �~dḡ, where ḡ is the
arithmetic sample mean and sg the sample standard deviation of git (Johnson, 1949). However, it is
known that maximum likelihood estimation systematically fails when there is high concentration
around the mean (Kottegoda, 1987; Siekierski, 1992; Zhou and McTague, 1996). Since we expect
such high levels of kurtosis in the distribution of Scaled Earnings E0, for the purposes of this paper we
turn to the more flexible least squares methodology developed by Swain et al. (1988) to address this
particular concern.

The quadratic problem of least squares seeks to minimise the sum of squared ordinate differences
between the ranked parametric approximation of the fitted bounded distribution to the standard
normal gþ dgðitÞ*zð0; 1Þ and the nonparametric expected standard normal scores i=ðnþ 1Þ, as
follows:

XN
it¼1

e2it ¼
XN
it¼1

Y gþ d ln
E

0
itð Þ � x

xþ l� E
0
itð Þ

 !( )
� it

Nþ 1

 !2

; ðA1Þ

where Yf:g indicates the translation to z, and E
0
itð Þ the ascendingly ordered sample of

x < fE0
1ð Þ � E

0
2ð Þ � . . . � E

0
Nð Þg < xþ l. By assuming independent and homoscedastic errors we

minimise the sum of equally weighted
P

e2it by searching for the best possible OLS fit of x; l; g; df g,
under the following conditions:

min
OLS

x;l;g;d

XN
it¼1

e2it

�1 � x < E
0
ð1Þ

ðE0
ðNÞ � xÞ < l � ð1� xÞ
signfgg ¼ signfb1g

d > 0

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ðA2Þ

Equation (A2) gives the objective function with bounds for ξ, λ and δ, but allows γ to take any value
or be equal to zero as long as it bears the same sign as the skewness coefficient b1. The sign constraint
on γ is a useful condition that directs optimisation so that it escapes local optima that are implied by
initial values. With regard to the bounds, if ξ= –1 and λ=2 are representative extrema of the expected
sample space, then only the conditions for γ and δ need to be satisfied. Yet, it has been shown that by
allowing estimation of narrower limits within the bounded range it is possible to significantly
improve the quality of the fit (Tsionas, 2001).

Alternatively to Equation (A2), Swain et al. (1988) suggest that when estimating a non-linear
model, such as the one considered here, it may prove useful to relax the OLS assumptions and instead
minimise the following weighted least squares (WLS):

min
WLS

x;l;g;d
2 Nþ 1ð Þ Nþ 2ð Þ

XN
it¼1

e2it �
XN
it¼2

eiteit�1

 !�����conditions
( )

; ðA3Þ

subject to the same conditions given for Equation (A2). In addition, Swain et al. (1988) further
demonstrate how the inverse variances of the errors

VarðeitÞ�1 ¼ ðNþ 2Þ=½itðNþ 1Þ�1ð1� itðNþ 1Þ�1Þ�
generate a special type of objective function known as the diagonally weighted least squares
(DWLS), as follows:

min
DWLS

x;l;g;d

XN
it¼1

Var eitð Þ�1e2it

�����conditions
( )

; ðA4Þ
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Appendix
Recovering the fitted parameters for scaled earnings (continued)
again, subject to the same conditions listed above. DWLS is the minimum variance linear unbiased
estimator. In effect, it assigns larger weights to the tails of the ordered frequency in relation to the
middle of the range, and therefore is expected to perform better in situations that require a good fit in
the tails or the shoulders of the distribution.

We solve the optimisation routines of Equations (A2), (A3) and (A4) for each of the following four
settings: (i) ξ= –1 and ξ+λ=1, (ii) ξ= –1 and ξ+λ<1, (iii) ξ> –1 and ξ+λ=1, and (iv) ξ> –1 and ξ+λ<1.
The optimal solution conditional on the objective function and setting is the one with the minimum
converged sum of squares, and the smallest L∞-norm of the difference between the observed and the
fitted density.

To solve these iterative problems we modify the program given by Swain et al. (1988) for fitting
Johnson distributions (see also DeBrota et al., 1988). These modifications include setting starting
values for the MLE shape parameters ~g and ~d and the theoretical bounds of the distribution ξ= –1 and
ξ+λ=1, placing the tolerance of parameters at the fourth decimal place, and fitting large samples. We
make use of both available iterative algorithms that were originally chosen for their design to address
the specific problem of least squares. Optimisation starts by applying the Levenberg-Marquardt
algorithm (LMA), which can be considered as a hybrid of the steepest gradient descent algorithm
when it searches away from the global minimum, and the Gauss-Newton algorithm (GMA) when it
approaches the global minimum. However, although the LMA is more robust than the GMA, it can
still be very slow in converging conditional on the size of the problem, starting values, tolerance
limits and shape of the terrain. For this reason, we allow for only amaximum number of 150 iterations
and, if the LMA fails to converge, the optimality search switches to the Nelder-Mead algorithm
(NMA) of the simplex class of methods for completion. The NMA is relatively robust and
numerically uncomplicated since it does not require the evaluation nor the existence of derivatives,
and therefore can converge more easily. Both algorithms have a downhill orientation which is
appropriate for the minimisation problem of the sum of squares, i.e. a second order polynomial with
zero ogees. Yet, since these algorithms may cause numerical instability we restart each procedure by
using as initial values the previously converged set of parameters. We repeat this process until there is
no change at the fourth decimal place.

It should be noted that, although the main aim for this paper has been to strike a balance in scaling
over the peak and the shoulders, it is possible nevertheless to choose the density region which
requires particular attention. For example, if a precise description of the peak is required, an objective
function may be employed that minimises the distance between the theoretical and the observed
global maximum (e.g. an L∞-norm function), whereas a good fit in the shoulders may be achieved by
solving a system of percentile equations that describe the particular region (e.g. Mage, 1980; Flynn,
2006). Further improvement may be achieved through enhanced optimisation routines, including
algorithms for unsmooth functions with multiple local optima and unsuccessful starting values (see
Cormen et al., 2001; Michalewicz and Fogel, 2002).

Comparing the fit to the normal
The fit of Equation (A2) can be tested against the alternative of a normal fit by restricting Equation (7)
so that gþ dE

0 ¼ z*N 0; 1ð Þ. Accordingly, the errors are computed as follows:

XN
it¼1

e2it ¼
XN
it¼1

Y gþ dE
0
itð Þ

n o
� i

Nþ 1

� �2

ðA5Þ

We employ a Lagrange Multiplier test LM ¼ nðSSER � SSEUÞ=ðSSERÞ to examine the
restricted fit to the normal, where SSEU and SSER are the sum of squared errors for the unrestricted
Equation (A1) and the restricted Equation (A5), respectively. This LM test follows a w2 distribution
with 2 degrees of freedom that represent the number of parameter restrictions placed in Equation (7),
i.e. ξ=0 and λ=1.
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Appendix
Recovering the fitted parameters for scaled earnings (continued)
Parametric point estimates of central tendency
Expected mean: Although the non-central moments are cumbersome to compute, Johnson (1949)
shows that the first moment may be expressed as a ratio of infinite series that are independent of
integral calculations, as follows:

m
0
1 ¼

1ffiffiffiffiffiffi
2p

p e�
1
2g

2

1
2dþ1

d

P?
n¼1

e�n2=2d2 cosh
n 1�2gdð Þ

2d2

� 	
sech n

2d2

� 	� �
1þ2
P?
n¼1

e�2n2p2d2 cos 2npgdð Þ
�

2pd
P?
n¼1

e
�1
2
2n�1ð Þ2p2d2

sin 2n�1ð Þpgdð Þcosech 2n�1ð Þp2d2ð Þ
� �

1þ2
P?
n¼1

e�2n2p2d2 cos 2npgdð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ðA6Þ

Given the fitted x; l; g; df g and the relatively large values of δ, we solve Equation (A6) for that n at
which e�n2=2d2 ¼ e�

1
2 2n�1ð Þ2p2d2 ¼ e�2n2p2d2 ¼ 0 at double precision.

Expected median: As the bounded distributional function for Scaled Earnings E0 can be written as a
translation to the standard normal z ¼ gþ d ln E

0 � x
� �

= xþ l� E
0� �� �

, then by setting the median
of z to zero, we derive the fitted median:

E
0
0 ¼ xþ l 1þ exp g=dð Þð Þ�1 ðA7Þ

Accordingly, we may re-write Equation (A7) in the form of a standardised median value
ðE0

0 � xÞ=l ¼ 1þ exp g=dð Þð Þ�1.
Expected mode: The Johnson bounded system accommodates both unimodal and bimodal curves. By
differentiating Equation (8) and equating to zero we obtain:

2
E

0 � x
l

� �
� 1� gd ¼ d ln

E
0 � x

xþ l� E
0

� �
ðA8Þ

For d � 1=
ffiffiffi
2

p
, there is a single solution to Equation (A8), with a uni-mode E

0
M which can be

recovered using a non-linear root-finding algorithm (Kotz and Van Dorp, 2004).
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