IMPLEMENTASI METODE FUZZY TIME SERIES TERHADAP DAMPAK PERUBAHAN HARGA BAHAN BAKAR MINYAK (BBM) PADA INVESTASI SAHAM (STUDI PERISTIWA: SAHAM PADA IHSG DI BURSA EFEK INDONESIA)

Budi Karyo Utomo

Sistem Informasi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Jl. Nakula I No. 5-11, Semarang, 50131, (024) 3520165 E-mail: 112201104301@mhs.dinus.ac.id

Abstrak

Perubahan harga bahan bakar minyak merupakan salah satu faktor yang berpengaruh terhadap investasi saham pada Indeks Harga Saham Gabungan (IHSG) di Indonesia, namun dalam proses pergerakan harga saham yang tidak menentu para investor ditekan untuk lebih selektif dalam berinvestasi untuk mengurangi resiko yang dapat terjadi saat menjalankan proses bisnis. Proses peramalan sangat dibutuhkan pada data runtun waktu seperti indeks harga saham, karena dapat menunjang investor dalam proses pengambilan keputusan. Fuzzy time series merupakan salah satu metode soft computing yang telah diterapkan dalam analisis data runtun waktu. Tujuan utama dari fuzzy time series adalah untuk memprediksi data real time yang berada di pasar modal. Dalam penelitian ini menerapkan metode fuzzy time series pada salah satu indikator pergerakan saham. Dengan menghitung tingkat akurasi metode fuzzy time series yang diterapkan pada data IHSG, diharapkan metode ini dapat menjadi alternatif untuk memprediksi data IHSG guna meminimalisasi resiko yang dapat terjadi. Hasil dari perhitungan metode fuzzy time series akan menghasilkan output berupa peramalan data kuantitatif untuk periode berikutnya berdasarkan Mean Absolute Percentage Error (MAPE).

Kata kunci: perubahan harga bahan bakar minyak, IHSG, fuzzy time series, soft computing, MAPE

Abstract

Prices of fuel oil changes is one of the factors that influence the equity investment in the Jakarta Composite Index (JCI) in Indonesia, but in the process of stock price movements are erratic investors pressed to be more selective in investing to reduce the risks that occurs when running the business process. The forecasting process is needed on time series data such as stock price index because it can support investors in the decision-making process. Fuzzy time series is one of soft computing methods that have been applied in the analysis of time series data. The main objective of fuzzy time series is to predict the real-time data residing in the capital market. In this study applying the fuzzy time series method on one of the indicators of stock movement. By calculating the level of accuracy of fuzzy time series method, is applied to the data JCI, is expected to be as to predict JCI in order to minimize the risk possibility. Results of the calculation fuzzy time series method will produce quantitative data forecasting for subsequent periods based on Mean Absolute Percentage Error (MAPE).

Keywords: changes in fuel prices, JCI, fuzzy time series, soft computing, MAPE

1. PENDAHULUAN

1.1. Latar Belakang

Investasi merupakan salah satu bagian dari proses bisnis dalam pasar modal. Bagi para investor memungkinkan untuk memilih investasi sesuai dengan preferensi resiko yang mereka miliki untuk berinvestasi di pasar modal. Para investor yang berani dalam mengambil resiko tinggi untuk investasinya akan berbanding dengan return yang lebih besar dari dana yang ditanamkannya. Investasi mempunyai dua pengertian langsung vaitu investasi (direct invesment) dan investasi tidak langsung (indirect investment) [1]. Beberapa aset investasi yang bisa dilakukan oleh pihak investor terdapat dua macam, pertama aset riil vaitu investasi dalam bentuk emas, tanah, bangunan, dan sebagainya. Kedua aset finansial vaitu aset dalam bentuk obligasi, saham, reksadana, future dan produk derivatif lainnya [2]. Dalam proses bisnis investasi saham merupakan salah satu alternatif yang bisa dipilih oleh investor. Saat investor memutuskan untuk membeli saham berarti investor telah menginvestasikan dananya dengan harapan akan mendapat keuntungan dari hasil penjualan saham tersebut. Jadi, dalam proses bisnis investor telah berinvestasi dan juga melakukan transaksi di pasar modal.

Dalam melakukan investasi dibutuhkan banyak informasi guna mengetahui perkembangan dari saham yang telah diinvestasikan. Pasar modal memberikan banyak informasi yang dapat digunakan oleh para investor, baik informasi tersedia dipublik yang maupun informasi pribadi. Tapi informasi juga dapat diambil informasi internal maupun informasi eksternal dari perusahaan terkait atau terhadap perkembangan ekonomi yang sedang berlangsung. Informasi yang didapat merupakan salah satu indikator vang diperlukan pihak investor untuk melakukan proses bisnis di pasar modal. Karena informasi yang masuk ke dalam pasar modal dapat mempengaruhi naik turunnya harga saham dalam pasar modal. Salah satu informasi yang ada adalah perubahan harga bahan bakar minyak (BBM) yang terjadi 19 Januari Terjadinya perubahan harga bahan bakar minyak sangat meresahkan bagi semua segmen perekonomian, yang diberikan informasi menjadi berguna jika keberadaan informasi ini dapat menyebabkan investor melakukan proses bisnis di pasar modal, dimana dapat dicerminkan dalam perubahan harga saham, volume perdagangan yang terjadi dan karakteristik pasar lainnya. Perubahan harga bahan bakar minyak berdampak langsung

kepada perubahan-perubahan biaya operasional dari perusahaan yang mengakibatkan tingkat keuntungan kegiatan investasi langsung terkoreksi [3]. Peristiwa naikturunnya harga bahan bakar minyak pada awal tahun 2015 ini diperkirakan akan berimbas pada harga saham sektor Indeks Harga Saham Gabungan (IHSG). Data runtun waktu (time series) adalah adalah suatu pengamatan berdasarkan waktu dari runtun karakteristik kuantitatif dari satu atau sekumpulan kejadian yang diambil dalam periode tertentu [4].

Pada penelitian ini, peneliti menerapkan fuzzy time series dalam peramalan data Indeks Harga Saham Gabungan (IHSG). Dengan penelitian peramalan data IHSG ini, diharapkan para investor dapat memprediksikan kenaikan dan penurunan harga saham di masa mendatang. Guna menghitung tingkat akurasi data runtun waktu Indeks Harga Saham Gabungan (IHSG) berdasarkan pengaruh studi peristiwa (event study) perubahan harga bahan bakar minyak (BBM) untuk mengetahui reaksi apa yang dihasilkan dari peristiwa yang terjadi terhadap saham pasar modal. Peneliti akan menggunakan kriteria *Mean Absolute Percentage Error* (MAPE).

1.2. Rumusan Masalah

- 1. Bagaimana mengimplementasikan metode *fuzzy time series* berdasarkan *event study* perubahan harga bahan bakar minyak untuk peramalan data Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI)
- 2. Berapa tingkat keakuratan perhitungan dengan *Mean Absolute Percentage Error* (MAPE) pada peramalan data Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI).

1.3. Tujuan Penelitian

- 1. Menerapkan data-data Indeks Harga Saham Gabungan ke dalam pemodelan peramalan dengan metode fuzzy time series berdasarkan event study perubahan harga bahan bakar minyak per periode
- 2. Mengetahui tingkat akurasi nilai hasil peramalan data indeks harga saham gabungan menggunakan metode *fuzzy time series*.

2. LANDASAN TEORI

2.1. Peramalan (*Forecasting*)

Menurut [5], peramalan merupakan bagian internal dari kegiatan pengambilan keputusan manajemen. Peramalan (forecasting) merupakan kegiatan mengistemasikan apa yang akan terjadi pada masa mendatang. Peramalan ini dibutuhkan karena adanya

perbedaan kesenjangan waktu (time lag) antara kesadaran akan dibutuhkannya suatu kebijakan baru dengan waktu pelaksanaan kebijakan tersebut. Dan apabila perbedaan waktu itu panjang, maka peran peramalan begitu penting dan sangat diperlukan, terutama dalam penentuan kapan terjadi suatu kejadian sehingga dapat dipersiapkan tindakan yang perlu dilakukan untuk dipergunakan dalam penentuan tersebut.

2.2. Data Runtun Waktu (Time Series)

Data runtun waktu (time series) adalah rangkaian suatu pengamatan berdasarkan waktu dari urutan kuantitatif karakteristik dari suatu kumpulan kejadian yang diambil dalam periode waktu tertentu [4]. Untuk memahami beberapa karakteristikkarakteristik yang dimiliki data runtun waktu, para peneliti telah mengadopsi metode-metode analisis data runtun waktu (time series analysis) yang salah tujuannya merupakan untuk satu menemukan suatu pola yang dapat digunakan dalam peramalan kejadian mendatang [6].

2.3. Peramalan Data Runtun Waktu (Forecasting Time Series Data)

Peramalan data *time series* memprediksikan apa yang akan terjadi berdasarkan data historis masa lalu. *Time Series* adalah kumpulan dari pengamatan yang teratur pada sebuah variabel selama periode waktu yang sama dan suksesif. Dengan mempelajari bagaimana sebuah variabel berubah setiap waktu dapat diformulasikan dan digunakan untuk memprediksi tingkat kebutuhan yang akan datang [7].

[5]menjelaskan pada umumnya bahwa peramalan kuantitatif dapat diterapkan bila terdapat tiga kondisi berikut:

1. Tersedia informasi tentang data masa lalu (data historis)

- 2. Informasi tersebut dapat dikuantitatifkan kedalam bentuk numeric
- 3. Dapat diasumsikan bahwa beberapa aspek pola masa lalu akan terus berlanjut di masa mendatang.

2.4. Logika Fuzzy

Gagasan logika fuzzy dicetuskan oleh [8] yang mengemukakan bahwa suatu himpunan fuzzy (fuzzy set) untuk menerangkan suatu logika bertingkat. Logika ini kemudian dikenal dengan logika fuzzy dan menjadi dasar semua logika dengan mengabaikan banyaknya tingkatan kebeneran yang diasumsikan. "fuzz" [8]memiliki kata untuk mempresentasikan suatu logika kontinyu antara 0 (pasti salah) dan 1 (pasti benar).

2.5. Peramalan dengan Fuzzy Time Series

Berikut langkah-langkah penerapan *fuzzy time series* [9.10]:

- 1. Definisikan himpunan semesta U dan bagi menjadi beberap interval $u^1, u^2, ..., u^n$ dengan panjang yang sama. Himpunan semesta yang digunakan adalah presentase perubahan data runtun waktu $i \ ke \ i + 1$
- Tentukan kepadatan distribusi dari presentase perubahan data runtun waktu dengan mengurutkan data tersebut ke dalam interval yang bersesuai. Selanjutnya tentukan jumlah data yang terdapat dalam masing-masing invterval.

Temukan interval yang memiliki jumlah data terbanyak dan bagi menjadi empat sub interval dengan panjang yang sama. Kemudian bagi interval yang memiliki jumlah data terbanyak kedua menjadi tiga sub interval dengan panjang yang sama.

- Interval yang memiliki jumlah data terbanyak ketiga dibagi menjadi dua sub interval dengan panjang yang sama. Untuk interval-interval lainnya, biarkan seperti semula
- 3. Definisikan tiga himpunanhimpunan fuzzy Aⁱ berdasarkan terbentuk interval yang fuzzifikasi presentase perubahan data runtun waktu tersebut. Himpunan fuzzy Aⁱ menunjukkan variabel linguistik dari presentase perubahan data runtun Seperti dalam [11] digunakan fungsi keangotaan segitiga untuk mendefinisikan himpunan fuzzy A^{i} , seperti yang ditunjukan pada langkah berikutnya
- 4. Defuzzifikasikan data *fuzzy* dengan menggunakan rumus peramalan berikut [*9*]. Adapun perhitunganya dapat dilihat pada rumus 1:

$$t_{j} = \begin{cases} \frac{\frac{1+0.5}{\frac{1}{a_{j}} + \frac{0.5}{a_{j+1}}}}{\frac{0.5+1+0.5}{a_{j-1}} + \frac{0.5}{a_{j}} + \frac{0.5}{a_{j+1}}} \\ \frac{0.5+1}{\frac{0.5}{a_{j-1}} + \frac{1}{b_{j}}} \end{cases}$$
(1)

, jika j = 1, $jika 2 \le j \le k - 1$, jika j = k

,dimana a_{j-1} , a_j , a_{j+1} merupakan titik tengah dari interval fuzzy A_{j-1} , A_j , A_{j+1} Secara berurutan. t_j menunjukkan presentase perubahan data runtun waktu hasil peramalan.

2.6. Perhitungan Error

Mean absolute percentage error memberikan petunjuk mengenai seberapa besar rata-rata kesalahan absolute peramalan dibandingkan dengan nilai sebenarnya. Adapun perhitungannya dapat dilihat pada rumus 2:

$$MAPE = \frac{\sum_{t=1}^{n} \left| \frac{x_t - \hat{x}_t}{x_t} \right|}{n} x100\%$$
 (2)

,dimana n menyatakan jumlah data dan $A_i - F_i$ merupakan nilai kesalahan hasil ramalan. Dalam hal ini, A_i adalah nilai data aktual dan F_i adalah nilai ramalan.

3. METODE PENELITIAN

3.1. Metode Pengumpulan Data

1. Studi Pustaka

Metode studi pustaka dilakukan dengan cara mencari informasi dari beberapa sumber. Sumber Informasi dapat berasal dari buku, jurnal, artikel ataupun vang dapat mendukung penelitian. Metode ini dapat membantu penulis dalam memperoleh informasi terkait dengan Indeks Harga Saham Gabungan (IHSG).

2. Browsing

Pengumpulan data dengan cara mendownload data sekunder harga saham, volume perdagangan, dan jumlah saham yang beredar dari Indeks Harga Saham Gabungan (IHSG) dan komponen dari tanggal 16 Maret 2015 sampai 13 April 2015.

Sumber [12] yang diakses pada bulan april 2015. Data yang didapatkan sebanyak 20 record.

3. Dokumentasi

Cara pengumpulan data dengan membuat salinan atau menggandakan data yang ada baik laporan perdagangan saham atau informasi disekitar tanggal pengumuman berlakunya kenaikan harga BBM.

3.2. Metode Analisis

Metode dan tahapan-tahapan yang digunakan dalam peramalan data IHSG dengan menggunakan fuzzy time series. Adapun tahap-tahapan menggunakan metode fuzzy time series [9,10] adalah sebagai berikut:

- 1. Data yang diramalkan adalah *time* series dengan modal $x = \{x_1, x_2, ..., x_n\}$
- 2. Hitunglah presentase perubahan data dari tanggal ke tanggal dengan rumus 3:

$$d_t = \left(\frac{(x_t - x_{t-1})}{x_{t-1}} x 100\%\right)$$
 (3)

, d_t adalah presentase perubahan , x_t adalah data per — periode

- 3. Tentukan himpunan semesta *U* dengan *U=[LL,UL]*, dimana *LL* adalah batas bawah yang nilainya dekat lebih kecil dengan persentase perubahan terkecil (minimum) dan *UL* adalah batasan atas yang nilainya dekat lebih besar dari persentase perubahan terbesar (maksimum)
- 4. Bagi himpunan semesta ke dalam beberapa interval yang sama. Kemudian kelompokkan d_t ke dalam invterval yang sesuai dan hitung frekuensi d_t pada masingmasing interval
- 5. Cacah interval berdasarkan jumlah frekuensi d_t pada masing-masing invterval. Pencacahan didasarkan pada frekuensi data terbesar hingga terkecil. Misalkan ada A buah interval, maka interval dengan frekuensi pertama dibagi A menjadi A buah interval dengan rentang interval yang sama. Untuk interval dengan frekuensi terbesar kedua dibagi A-1 menjadi A-1 buah interval dengan rentang interval yang sama. Begitu selanjutnya

- hingga sampai pada frekuensi terkecil dan tidak dapat dibagi lagi
- 6. Misalkan ada u₁, u₂,..., u_n interval, maka aka ada sebanyak *k* himpunan *fuzzy* dengan masing-masing interval yang diperoleh melalui pencacahan pada langkah 5. Sebagai domain himpunan *fuzzy*
- 7. Definisikan himpunan fuzzy A_i dengan i=1,2,...,n. berdasarkan interval yang terbentuk dengan menggunakan fungsi keanggotaan kemudian triangular, cari titik tengah pada interval yang diperoleh untuk mencari nilai prediksi persentase perubahan
- 8. Defuzzifikasikan data *fuzzy* dengan menggunakan rumus peramalan berikut [*9*]. Adapun perhitunganya dapat dilihat pada rumus 1:

$$t_{j} = \begin{cases} \frac{1+0.5}{\frac{1}{a_{j}} + \frac{0.5}{a_{j+1}}} \\ \frac{0.5+1+0.5}{\frac{0.5}{a_{j-1}} + \frac{1}{a_{j}} + \frac{0.5}{a_{j+1}}} \\ \frac{0.5+1}{\frac{0.5}{b_{j-1}} + \frac{1}{b_{j}}} \end{cases}$$
(1)

$$, jika j = 1$$

 $, jika 2 \le j \le k - 1$
 $, jika j = k$

Dimana t=2,3,...,n. dan j=1,2,...,n, a_{j-1} , a_j , a_{j+1} merupakan titik tengah dari interval *fuzzy* A_{j-1} , A_j , A_{j+1} Secara berurutan. t_j menunjukkan presentase perubahan data runtun waktu hasil peramalan.

9. Menentukan nilai data berdasarkan hasil peramalan $t_j \rightarrow F(t)$, dimana F(t) adalah nilai peramalan data berdasarkan hasil peramalan presentase perubahan. Rumus F(t) dapat dilihat pada rumus 4:

$$F(t) = \left(\frac{t_j}{100} \cdot x_{t-1}\right) + x_{t-1} \tag{4}$$

- ,dimana x_{t-1} = data aktual ke t-1
- 10. Untuk peramalan t+1, digunakan metode peramalan klasik untuk membangkitkan data peramalan yang digunakan sebagai data aktual untuk peramalan Algorithma *fuzzy time series*. Metode peramalan klasik disesuaikan dengan pola data aktual.
- 11. Menghitung *Mean Absolute Persentage Error (MAPE)* antara data aktual dan hasil peramalan, yaitu dapat dilihat pada rumus 5:

$$MAPE = \frac{\sum_{t=1}^{n} \left| \frac{x_t - \hat{x}_t}{x_t} \right|}{n} x100\%$$
 (5)

,dimana n=banyaknya data peramalan ke-n

Maka dari perhitungan MAPE akan menghasilkan perhitungan *error*, sehingga diketahui tingkat akurasi dan tingkat kesalahan penggunaan metode *fuzzy time series*.

4. HASIL DAN PEMBAHASAN

4.1. Hasil Peramalan

Berikut ini merupakan tabel hasil peramalan Fuzzy Time Series (FTS) untuk peramalan t+1.

Tabel 1:Hasil Peramalan t+1 FTS

Tabel 1.11ash 1 clamatan t + 1 1 15				
No.	Tanggal	Harga	Forecast	
1	3/16/2015	5435.27		
2	3/17/2015	5439.15	5441.994	
3	3/18/2015	5413.15	5467.206	
4	3/19/2015	5453.85	5435.485	
5	3/20/2015	5443.06	5461.926	
6	3/23/2015	5437.1	5448.947	
7	3/24/2015	5447.65	5449.848	
8	3/25/2015	5405.49	5487.265	
9	3/26/2015	5368.8	5438.84	
10	3/27/2015	5396.85	5400.324	
11	3/30/2015	5438.66	5445.841	
12	3/31/2015	5518.67	5504.972	
13	4/1/2015	5466.87	5539.354	
14	4/2/2015	5456.4	5478.822	
15	4/6/2015	5480.03	5484.882	
16	4/7/2015	5523.29	5521.258	
17	4/8/2015	5486.58	5547.484	
18	4/9/2015	5500.9	5498.774	
19	4/10/2015	5491.34	5513.868	
20	4/13/2015	5447.41	5526.014	
21	4/14/2015	5473.64	5475.846	

Berikut ini merupakan tabel penentuan tingkat akurasi (*error*) metode *Fuzzy Time Series* menggunakan perhitungan *Mean Absolute Percentage Error* (MAPE).

Tabel 2: Penentuan Tingkat Akurasi FTS

No.	Tanggal	Harga	Forecast	Error %
1	3/16/2015	5435.27		
2	3/17/2015	5439.15	5441.994	0.0523
3	3/18/2015	5413.15	5467.206	0.9986
4	3/19/2015	5453.85	5435.485	0.3367
5	3/20/2015	5443.06	5461.926	0.3466
6	3/23/2015	5437.1	5448.947	0.2179
7	3/24/2015	5447.65	5449.848	0.0403
8	3/25/2015	5405.49	5487.265	1.5128
9	3/26/2015	5368.8	5438.84	1.3046
10	3/27/2015	5396.85	5400.324	0.0644
11	3/30/2015	5438.66	5445.841	0.1320
12	3/31/2015	5518.67	5504.972	0.2482
13	4/1/2015	5466.87	5539.354	1.3259
14	4/2/2015	5456.4	5478.822	0.4109
15	4/6/2015	5480.03	5484.882	0.0885
16	4/7/2015	5523.29	5521.258	0.0368
17	4/8/2015	5486.58	5547.484	1.1101
18	4/9/2015	5500.9	5498.774	0.0386
19	4/10/2015	5491.34	5513.868	0.4102
20	4/13/2015	5447.41	5526.014	1.4430
21	4/14/2015	5419.11	5457.955	0.7169
22	4/15/2015	5414.55	5425.811	0.2080
			MAPE:	0.5259

Berdasarkan tabel hasil peramalan peramalan diatas. pada periode 4/15/2015 diperoleh data peramalan sebesar 5425.811 dengan tingkat kesalahan sebesar 0.2080%, sedangkan untuk tingkat kesalahan secara keseluruhan sebesar 0.5259% dihitung menggunakan perhitungan MAPE dari periode 3/19/2015 sampai dengan 4/15/2015.

4.2. Analisis Perbandingan FTS dengan DES Holt dan SAM

Hasil yang dicapai dari peramalan Fuzzy Time Series masih perlu dibandingkan dengan metode peramalan yang lain, diantaranya metode Double Exponential Smoothing Holt (DES Holt) dan Simple Moving Averages (SAM) dengan hasil peramalan t+1 dan tingkat akurasi sebagai berikut.

Tabel 3:Hasil Peramalan t+1 DES Holt

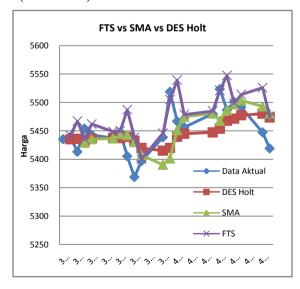
No.	Tanggal	Harga	Forecast	Error
				%
1	3/16/2015	5435.27		
2	3/17/2015	5439.15	5435.27	0.0713
3	3/18/2015	5413.15	5436.046	0.4230
4	3/19/2015	5453.85	5431.467	0.4104
5	3/20/2015	5443.06	5435.944	0.1307
6	3/23/2015	5437.1	5437.367	0.0049
7	3/24/2015	5447.65	5437.314	0.1897
8	3/25/2015	5405.49	5439.381	0.6270
9	3/26/2015	5368.8	5432.603	1.1884
10	3/27/2015	5396.85	5419.842	0.4260
11	3/30/2015	5438.66	5415.244	0.4306
12	3/31/2015	5518.67	5419.927	1.7892
13	4/1/2015	5466.87	5439.676	0.4974
14	4/2/2015	5456.4	5445.115	0.2068
15	4/6/2015	5480.03	5447.372	0.5959
16	4/7/2015	5523.29	5453.904	1.2563
17	4/8/2015	5486.58	5467.781	0.3426
18	4/9/2015	5500.9	5471.541	0.5337
19	4/10/2015	5491.34	5477.413	0.2536
20	4/13/2015	5447.41	5480.198	0.6019
21	4/14/2015	5419.11	5473.64	1.0063
22	4/15/2015	5414.55	5462.734	0.8900
	MAPE: 0.5990			

Tabel 4:Hasil Peramalan t+1 SAM

No.	Tanggal	Harga	Forecast	Error %
1	3/16/2015	5435.27		
2	3/17/2015	5439.15		
3	3/18/2015	5413.15		
4	3/19/2015	5453.85	5429.192	0.452
5	3/20/2015	5443.06	5435.386	0.141
6	3/23/2015	5437.1	5436.690	0.008
7	3/24/2015	5447.65	5444.672	0.055
8	3/25/2015	5405.49	5442.604	0.687
9	3/26/2015	5368.8	5430.078	1.141
10	3/27/2015	5396.85	5407.312	0.194
11	3/30/2015	5438.66	5390.381	0.888
12	3/31/2015	5518.67	5401.437	2.124
13	4/1/2015	5466.87	5451.395	0.283
14	4/2/2015	5456.4	5474.733	0.336
15	4/6/2015	5480.03	5480.647	0.011
16	4/7/2015	5523.29	5467.766	1.005
17	4/8/2015	5486.58	5486.573	0.000
18	4/9/2015	5500.9	5496.635	0.078
19	4/10/2015	5491.34	5503.591	0.223
20	4/13/2015	5447.41	5492.941	0.836
21	4/14/2015	5419.11	5479.883	1.122
22	4/15/2015	5414.55	5452.619	0.703
	•	•	MAPE:	0.54137

Berdasarkan tabel hasil peramalan diatas, peramalan pada periode 4/15/2015 diperoleh data peramalan untuk DES Holt dan SAM masingmasing sebesar 5462.734 dengan tingkat kesalahan sebesar 0.8900% dan 0.703%, sedangkan untuk tingkat kesalahan secara keseluruhan sebesar 0.5990% dan 0.5413% dihitung

menggunakan perhitungan MAPE dari periode 3/19/2015 sampai dengan 4/15/2015.


4.3. Analisis Tingkat Akurasi FTS, DES Holt, dan SAM

Untuk mengetahui keakuratan hasil peramalan dengan alghoritma fuzzy time series di atas, maka perlu adanya pembanding dengan salah satu atau lebih metode peramalan yang lain dalam hal ini menggunakan salah satu metode peramalan klasik yaitu double exponential smoothing holt (DES Holt) dan metode peramalan Simple Moving Averages (SMA). Berikut adalah tabel hasil pengukuran tingkat kesalahan berdasarkan perhitungan MAPE.

Tabel 5:Perbandingan Tingkat Akurasi Metode Peramalan t+1 FTS, DES Holt, dan SAM

Pengukuran Kesalahan	Algoritma FTS	DES Holt	SMA
MAPE t+1	0.5259%	0.5990%	0.54137%

Berikut ini adalah plot perbandingan peramalan dengan menggunakan algotritma Fuzzy Time Series (FTS), Simple Moving Averages (SMA), dan Double Exponensial Smoothing Holt (DES Holt).

Gambar 1. Perbandingan Peramalan FTS, SMA dan DES Holt

5. KESIMPULAN DAN SARAN

5.1. Kesimpulan

- 1. Metode *fuzzy time series* dapat digunakan untuk meramalkan data Indeks Harga Saham Gabungan di Bursa Efek Indonesia dengan nilai *error* yang dihasilkan mendekati nol
- 2. Peramalan data menggunakan metode *fuzzy time series* memiliki nilai *error* sebesar 0.5259% jika *error* dihitung dengan perhitungan *Mean Absolute Percentage Error*, hal ini menunjukkan bahwa metode *fuzzy time series* dapat digunakan sebagai metode peramalan karena memiliki akurasi kesalahan yang rendah. Untuk peramalan ke *t+1* yaitu 4/15/2015 diperoleh hasil peramalan sebesar 5425.811.

5.2. Saran

- 1. Sebaiknya para investor dalam melakukan percobaan atau perhitungan menggunakan jumlah data *time series* lebih banyak, agar bisa diketahui hasil pengujian yang lebih akurat pada peramalan data Indeks Harga Saham Gabungan di Bursa Efek Indonesia
- 2. Membandingkan metode *fuzzy time series* dengan metode peramalan lainnya untuk mendapatkan hasil peramalan yang bisa dibandingkan tingkat akurasi masing-masing metode peramalan.

DAFTAR PUSTAKA

[1] A Rokhmatussa'dyah and Suratman , Hukum Investasi dan Pasar Modal. Jakarta: Sinar Grafika, 2009.

- [2] Ali Sadikin, "Analisis Abnormal Return Saham dan Volume Perdagangan Saham, Sebelum dan Sesudah Peristiwa Pemecahan Saham (Setudi pada Perusahaan yang Go Public di Bursa Efek Indonesia," *Jurnal Manajemen dan Akuntansi*, vol. XII, no. 1, April 2011.
- [3] Arisyahidin Hs, "Dampak Kebijakan Kenaikan Harga Bahan Bakar Minyak (BBM) Terhadap Investasi Saham di Bursa Efek Indonesia (BEI)," *Jurnal Ilmu Manajemen*, vol. I, no. 2, September 2012.
- [4] OECD. (2015, April) Glossary of Statistical Terms. [Online]. http://stats.oecd.org/glossary/about.asp
- [5] Makridakis S., Wheelright S.C., and McGee V.E., Metode dan Aplikasi Peramalan, 2nd ed., Adriyanto U.S. and Basith A., Eds. jakarta: Erlangga, 1992.
- [6] Subanar and Suhartono , Wavelet Neural Networks untuk Peramalan Data Time Series Finansial Program Penelitian Ilmu Dasar Perguruan Tinggi. Yogyakarta: FMIPA UGM, 2009.
- [7] Jumingan , Studi Kelayakan Bisnis— Teori dan Pembuatan Proposal

- *Kelayakan*. Jakrta: Bumi Aksara, 2009.
- [8] L A. Zadeh, "Fuzzy sets," *Dept. Electrical Engineering and Electronics*, vol. VIII, pp. 53-338, 1965.
- [9] Jilani T.A., Burney S.M.A, and Ardil C., "Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning," World Academy of Science, Engineering and Technology, no. 34, pp. 1-6, 2007.
- [10] Stevenson M. and Porter J.E., "Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse," *World Academy of Science, Engineering and Technology*, no. 27, 55, pp. 154-157, 2009.
- [11] Chen S.M. and Hsu C.C., "A New Method to Forecast Enrollments Using Fuzzy Time Series," *International Journal of Applied Science and Engineering*, no. 2, 3, pp. 234-244, 2004.
- [12] Yahoo! ABC News Network. (2015, April) Yahoo Finance. [Online]. http://finance.yahoo.com/