UDiNus Repository

ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEMPREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN

RESI, VINSENSIUS RINDA (2014) ANALISIS PERBANDINGAN METODE BACKPROPAGATION DAN RADIAL BASIS FUNCTION UNTUK MEMPREDIKSI CURAH HUJAN DENGAN JARINGAN SYARAF TIRUAN. Skripsi, Fakultas Ilmu Komputer.

[img]
Preview
PDF - Published Version
Download (3533b) | Preview

    Abstract

    Indonesia is a tropical country with very high rainfall. Rainfall prediction models are used for various purposes and accuracy becomes important especially in specialized areas such as flood prevention. This analysis is based on two methods: the method of Radial Basis Function and backpropagation method of training with multiple functions. The results obtained from the method of Radial Basis Function found that accuracy in predicting precipitation is 81.37% while for Backpropagation method with some training obtained better results is 99%. So that the prediction of rainfall is more advisable to use the method of artificial neural network with backpropagation training functions in order to get better accuracy rate.

    Item Type: Article
    Subjects: T Technology > Teknik Informatika > RPL Rekayasa Perangkat Lunak dan Data
    Universitas Dian Nuswantoro > Fakultas Ilmu Komputer > Teknik Informatika > RPL Rekayasa Perangkat Lunak dan Data
    Divisions: Library of Congress Subject Areas > T Technology > Teknik Informatika > RPL Rekayasa Perangkat Lunak dan Data
    Fakultas Ilmu Komputer > Teknik Informatika > RPL Rekayasa Perangkat Lunak dan Data
    Depositing User: Psi Udinus
    Date Deposited: 08 Sep 2014 13:34
    Last Modified: 22 Nov 2014 07:05
    URI: http://eprints.dinus.ac.id/id/eprint/5341

    Actions (login required)

    View Item