Appendix A Riew Gender Differences in Human Brain by Zeenat F Zaidi

NO	TEXT	PG	TYPES
1	Size & Weight The adult human brain weighs on average about 3lb (1.5kg) with a size of around 1130 cm3 in women and 1260 cm3 in men although there is substantial individual variation. Male brains are about 10% larger than female brains and weigh 11-12% more than that of a woman. Men's heads are also about 2% bigger than women's. This is due to the larger physical stature of men. Male's larger muscle mass and larger body size requires more neurons to control them. The brain weight is related to the body weight partly because it increases with increasing height. This difference is also present at birth. A boy's brain is between 12- 20% larger than that of a girl. The head circumference of boys is also larger (2%) than that of girls. However, when the size of the brain is compared to body weight at this age, there is almost no difference between boys and girls. So, a girl baby and a boy baby who weigh the same will have similar brain sizes.	37	Repetition Antonymy Synonymy Hyponymy Meronymy
2	Brain Volume <i>Sexual</i> dimorphisms of adult <i>brain volumes</i> were more evident in the cortex, with <i>women</i> having <i>larger volumes</i> , relative to cerebrum <i>size</i> , particularly in frontal and medial paralimbic cortices. <i>Men</i> had <i>larger volumes</i> , <i>relative</i> to cerebrum <i>size</i> , in frontomedial cortex, the amygdala and hypothalamus. There was <i>greater sexual</i> dimorphism in <i>brain</i> areas that are homologous with those identified in animal studies showing <i>greater</i> levels of <i>sex</i> steroid receptors during critical periods of <i>brain development</i> . These findings have implications for <i>developmental studies</i> that would directly test hypotheses about mechanisms relating <i>sex</i> steroid hormones to <i>sexual</i> dimorphisms in humans.	37	Repetition Antonymy Synonymy Hyponymy Meronymy
3	Grey Matter vs White Matter Ratios of grey to white matter also differ significantly between the sexes in diverse regions of the human cortex [5]. Variations in the amount of white and grey matter in the brain remain significant [6-8]. Men have approximately 6.5 times more gray matter in the brain than women, and women have about 10 times more white matter than men do [3]. At the age of 20, a man has around 176,000 km and a woman, about 149,000 km of myelinated axons in their brains [9]. Men appear to have more gray matter, made up of active neurons, and women more of the white matter responsible for communication between different areas of the brain [10]. In women's brains, the neurons are packed in tightly, so that they're closer together. Some women even have as many as 12 percent more neurons than men do [10]. These neurons are densely crowded on certain layers of the cortex, namely the ones responsible for signals coming in and out of the brain, and these differences were present from birth	37	Repetition Antonymy Meronymy Hyponymy

	[10]. When controlling for total cerebral volume, women had a <i>higher percentage</i> of <i>grey matter</i> than <i>men</i> , and men had a <i>higher percentage</i> of <i>white matter</i> [6, 8] and <i>both gray and white matter volumes</i> correlated with cognitive performance across sex groups. The average <i>number</i> of neocortical <i>neurons</i> was 19 billion in female <i>brains</i> and 23 billion in male <i>brains</i> , a 16% <i>difference</i> . In a study, which covered the <i>age</i> range from 20 <i>years</i> to 90 <i>years</i> , approximately 10% of all neocortical <i>neurons</i> are lost over the life span in both <i>sexes</i> . <i>Sex</i> and <i>age</i> were the main determinants of the total <i>number</i> of <i>neurons</i> in the <i>human</i> neocortex, whereas body size, per se, had no influence on <i>neuron number</i> [11]. Gender <i>differences</i> in precentral, cingulate, and anterior temporal <i>white matter</i> areas were also found, suggesting that microstructural <i>white matter</i> organization in these regions may have a <i>sexual</i> dimorphism [12].		
4	Hypothalamus Hypothalamus, where most of the basic functions of life are controlled, including hormonal activity via the pituitary gland also shows gender differences. The volume of a specific nucleus in the hypothalamus (third cell group of the interstitial nuclei of the anterior hypothalamus) is twice as large in heterosexual men as in women and homosexual men [13]. The preoptic area, involved in mating behavior, is about 2.2 times larger in men than in women and contains 2 times more cells. This enlargement is dependent on the amount of male sex hormones or androgens. Apparently, the difference in this area is only apparent after a person is 4 years old. At 4 years of age, there is a decrease in the number of cells in this nucleus in girls. The neuropil of the preoptic area is sexually dimorphic [14]. Gender-related differences were found in 2 cell groups in the preoptic-anterior hypothalamic area (PO-AHA) in human brain. Both nuclei were larger in male and appeared to be related in women to circulating steroid hormone levels [15]. The suprachiasmatic nucleus of the hypothalamus, involved with circadian rhythms and reproduction cycles, is different in shape in these two sexes. In males, this nucleus is shaped like a sphere whereas in females it is more elongated. However, the number of cells and volume of this nucleus are not different in men and women. It is possible that the shape of the suprachiasmatic nucleus influences the connections that this area makes with other areas of the brain, especially the other areas of the hypothalamus. In most hypothalamic areas that stain positively for androgen receptor (AR), nuclear staining in particular is less intense in young adult women than in men. The strongest sex difference is found in the lateral and medial mamillary nucleus [16]. The mamillary body complex is known to receive input from the hippocampus by the fornix and to be involved in cognition. In addition, a sex difference in AR staining is present in the horizontal diagonal band of Broca, the sexually d	38	Repetition Antonymy Hyponymy

	dorsal and ventral zone of the periventricular <i>nucleus</i> , the paraventricular <i>nucleus</i> , the supraoptic <i>nucleus</i> , the ventromedial hypothalamic nucleus and the infundibular nucleus. No <i>sex differences</i>		
	the <i>nucleus</i> basalis of Meynert and the island of Calleia [16]		
5	Anterior Commissure		
5	It connects several regions of the frontal and temporal lobes and is 12	38	Antonymy
	%, or 1.17mm2 larger in <i>women</i> than in <i>men</i> [17].	00	
6	Massa Intermedia		
	A structure that crosses the third ventricle between the two thalami,		
	was present in 78% of <i>females</i> and 68% of <i>males</i> . Among subjects		Donatition
	with a massa intermedia, the structure was an average of 53.3% or	28	Antonymy
	17.5 mm2 larger in <i>females</i> than in <i>males</i> . Anatomical sex differences	30	collocation
	in structures that connect the two cerebral hemispheres may, in part,		conocanon
	underlie <i>functional sex differences</i> in <i>cognitive function</i> and cerebral		
	lateralization.		
7	Cerebellum		Repetition
	An area of the <i>brain</i> important for posture and balance, and the pons,	38	Antonymy
	a brain structure linked to the cerebellum that helps control		Hyponymy
0	consciousness, are larger in <i>men</i> than in <i>women</i> [18].		51 5 5
8	Cerebral Hemispheres		
	According to the majority of studies, <i>men</i> possess larger cerebra than		
	differences are controlled statistically. Male brains were larger then		
	famale hrains in all locations, though male enlargement was most		Repetition
	prominent in the frontal and occipital poles bilaterally. The male	<i>38</i>	Antonymy
	differentiated brain has a thicker right hemisphere. This may be the		collocation
	reason <i>males</i> tend to be more spatial and mathematical <i>The left</i>		
	<i>hemisphere</i> which is important to communication is <i>thicker</i> in <i>female</i>		
	oriented <i>brains</i> .		
9	Cerebral Cortex		
-	Men have 4% more neurons than women, and about 100 grams more		
	of <i>brain</i> tissue. Women have a more developed neuropil, or the space		
	between cell bodies, which contains synapses, dendrites and axons.		
	This may explain why <i>women</i> are more prone to dementia (such as		
	Alzheimer's disease) than <i>men</i> , because although both may lose the		
	same number of neurons due to the disease, in <i>males</i> , the functional		Donatition
	reserve may be greater as a larger number of nerve cells are present,	38	Antonymy
	which could prevent some of the functional losses [20]. In the	50	collocation
	temporal neocortex, a key part which is involved in both social and		conocunon
	emotional processes and memory, men had a one third higher density		
	than <i>women</i> of synapses, and had more <i>brain</i> cells, though the excess		
	was slight compared with the excess in the number of synapses.		
	Sexual dimorphism has been reported in the cortical volume of the		
	Wernicke and Broca areas [21], as well as in the frontal and medial		
	paralimbic cortices [5, 19, 22, 23]. Differences have been reported in		

	the <i>thickness</i> and <i>density</i> of the grey matter in the parietal lobes [19] in the density of neurons [10, 11, 20, 24] and in the complexity of the dendritic arbors as well as in the density of dendritic spines in several cortical areas [25]. In <i>female brains</i> , the cortex is constructed <i>differently</i> , with neurons packed more closely together in layers 2 and 4 (which form the hard wiring for signals coming into the brain) of the temporal lobe, and in layers 3, 5 and 6 (which carry the wiring for outbound signals) of the prefrontal cortex [10]. Widespread areas of the cortical mantle are <i>significantly</i> thicker in <i>women</i> than in <i>men</i> [26]. Studies have shown greater cortical thickness in posterior temporal and inferior parietal regions in <i>females</i> relative to <i>males</i> , independent of <i>differences</i> in <i>brain</i> or body size. Age-by-sex interactions were not <i>significant1</i> in the temporoparietal region, suggesting that sex <i>differences</i> in these regions are present from at least late childhood and then are maintained throughout [19]. In a study it is shown that <i>men</i> have a <i>significant1y</i> higher synaptic density than Gender Differences in Human Brain: A Review The Open Anatomy Journal, 2010, Volume 2 39 women in all cortical layers of the temporal neocortex [27]. <i>Differences</i> in <i>brain</i> anatomy have included the length of the left temporal plane, which is usually longer than the right. The sex <i>differences</i> in cellularity of the planum temporale involved an 11% larger density of neurons in several cortical layers of females, with no overlap between <i>males</i> and <i>females</i> [10].		
10	Orbitofrontal to Amygdala Ratio (OAR) The ratio between the orbitofrontal cortex, a region <i>involved</i> in regulating <i>emotions</i> , and the <i>size</i> of the <i>amygdala</i> , <i>involved</i> in producing <i>emotional reactions</i> , was significantly <i>larger</i> in <i>women</i> than <i>men</i> . One can speculate from these findings that <i>women</i> might on average prove more capable of controlling their <i>emotional reactions</i> . <i>Women</i> have <i>larger</i> orbital frontal cortices than <i>men</i> , resulting in highly significant <i>difference</i> in the ratio of orbital grey to amygdala volume. This may relate to behavioral evidence for sex <i>differences</i> in <i>emotion</i> processing.	39	Antonymy Repetition collocation
11	Limbic Size Females have a more acute sense of smell, and on average, have a larger deep limbic system including hippocampus [4] and anterior commissure, a bundle of fibers which acts to interconnect the two amygdales [17], than males. Due to the larger deep limbic brain women are more in touch with their feelings, they are generally better able to express their feelings than men. They have an increased ability to bond and are connected to others. On the other hand larger deep limbic system leaves a female somewhat more susceptible to depression, especially at times of significant hormonal changes such as the onset of puberty, before menses, after the birth of a child and at menopause. Women attempt suicide three times more than men [29].	39	Antonymy Repetition synonymy
12	Straight Gyrus (SG)	<u>39</u>	Antonymy

	A narrow band at the base of the frontal lobe, involved in social cognition and interpersonal judgment is about 10% bigger in <i>women</i> than in <i>men</i> [36] (<i>men</i> 's <i>brains</i> are about 10% larger than <i>women</i> 's <i>brains</i> , so measures were proportional). In addition, the size of the SG also correlated with a test of social cognition, so that people who scored higher in interpersonal <i>awareness, male</i> or <i>female</i> , had larger SGs. A similar study in children between 7 and 17 years of age showed different results. The SG was larger in boys as compared to girls. And this time, a smaller SG correlated with better "interpersonal <i>awareness</i> "—the opposite of the results were seen in adults. This could be due to a reduction in grey matter volume, or pruning, which generally happens to <i>girls' brains</i> two years earlier than <i>boys'</i> . There does seem to be a relationship between SG size and social perception and <i>femininity</i> . Higher degrees of <i>femininity</i> were shown to be		Repetition
13	correlated with greater SG grey matter volume and surface area [36]. <i>Hippocampus</i> Sex <i>differences</i> exist in every brain lobe, including in many 'cognitive' regions such as the hippocampus, amygdala and neocortex [37]. Extensive evidence demonstrates that <i>male</i> and <i>female</i> hippocampi <i>differ</i> significantly in their anatomical structure, their neuroanatomic make-up and their reactivity to stressful situations [38]. Imaging studies consistently show that hippocampus is larger in <i>women</i> than in <i>men</i> when adjusted for total brain size [4].	39	Antonymy Repetition
14	Visual Processing and Language Memory Area The regions of the brain that play a key role in visual processing and in storing language and personal memories appear to differ between the sexes at the microscopic level. The frontal and the temporal areas of the cortex are more precisely organized in women, and are bigger in volume [54]. The density of synapses in the temporal neocortex was greater in men than in women . Fewer synapses to other regions may represent increasing specialization of the temporal cortex for language processing in females , and this may be related to their overall better performance on language tasks [27]. Sexes use different sides of their brains to process and store long-term memories [49] and a particular drug, propranolol, can block memory differently in men and women [55].	40	Repetition Antonymy
15	Emotions <i>Male</i> oriented <i>brains</i> , hardly <i>express feelings</i> . It is due to the use of the <i>right hemisphere</i> only. <i>Male brains</i> separate language, in the <i>left</i> , and <i>emotions</i> in the <i>right</i> , while the <i>female's emotions</i> are in both <i>hemispheres</i> . It helps explain why the <i>male brain</i> has a hard time <i>expressing its feelings</i>	41	Repetition Synonymy Antonymy
16	Thinking <i>Men</i> seem to <i>think</i> with their grey matter, which is full of active neurons. <i>Women think</i> with the white matter, which consists more of <i>connections</i> between the neurons. In this way, <i>a woman's brain</i> is a	41	Antonymy Repetition Hyponymy

	bit more complicated in setup, but those <i>connections</i> may allow <i>a</i> <i>woman's brain</i> to work faster than <i>a man's</i> . The parts of the frontal lobe, <i>responsible</i> for problem-solving and decision-making, and the limbic cortex, <i>responsible</i> for regulating emotions, were larger in <i>women</i> . In <i>men</i> , the parietal cortex, which is involved in space perception, and the amygdala, which regulates sexual and social behavior, was large. <i>Men</i> and <i>women differ</i> in accessing <i>different</i> sections of the <i>brain</i> for the <i>same</i> task. In one study, <i>men</i> and <i>women</i> were asked to sound out <i>different</i> words. <i>Men</i> relied on just one small area on the left <i>side</i> of the <i>brain</i> to complete the task, while the majority of women used areas in both <i>sides</i> of the <i>brain</i> . However, both <i>men</i> and <i>women</i> sounded out the words equally well, indicating that there is more than one way for the <i>brain</i> to arrive at the <i>same</i> result. (Paragraph 20:41)		
17	Lateral Ventricle 3-Tesla magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI) in unsedated healthy newborns showed differences in male and female brains. The left ventricle was significantly larger than the right; females had significantly larger ventricles than males [69]. There was significant ventricular asymmetry at birth, with the left ventricle being larger than the right. This ventricle asymmetry is present in older children [46] and indicates that lateralization of the brain is present at birth. Interestingly, female newborns had larger lateral ventricles than males, even in the face of similar intracranial volumes and birth weights. Studies in older children have found no gender difference [46] or that males have larger ventricles than females [70].	41	Repetition Antonymy
18	CAUSES Sexual differentiation of the human brain is a multi-factorial process. The differences are not thought to be only consequence of the influence of sex hormones on brain organization during development but also of genetic factors [2, 160, 161].	45	Repetition
19	Sex Hormones During the <i>development</i> of the embryo in the womb, circulating hormones have a very important role in the sexual <i>differentiation</i> of the <i>brain</i> . Depending on the type of hormone and the level of hormonal activity during the embryonic stage of <i>development</i> can produce <i>brains</i> with male or <i>female</i> traits. The presence of <i>androgens</i> in early life produces a " <i>male</i> " <i>brain</i> . In contrast, lack of <i>androgens</i> causes feminization, and the <i>female</i> sex is <i>developed</i> by default in a passive mechanism. However, studies have shown that <i>estrogen</i> plays an active role in <i>differentiation</i> of the <i>female brain</i> [168-173] and that the sensitive period for <i>estrogen</i> related processes occurs at a later time than that of <i>testosterone</i> related processes [174]. It is known, at least, in rodent <i>brains</i> , estradiol and not <i>testosterone</i> is responsible for the	46	Repetition Antonymy

20	masculinization of the <i>brain</i> . <i>Testosterone</i> , secreted from the testes in <i>male</i> fetuses is transported into the <i>brain</i> , where it is converted into estradiol by cytochrome P450 aromatase, locally expressed in <i>different</i> parts of the brain. While <i>female</i> fetuses are not exposed to testosterone from their gonads, they are still exposed to estradiol from their mothers. To prevent masculinization of the <i>female brain</i> , large amounts of alpha-fetoprotein are present in the blood of <i>female</i> fetuses, which could bind estradiol and thus preventing it from entering into the <i>brain</i> .		
	testosterone seem to be of primary <i>importance</i> based upon evidence shown e.g. from subjects with mutations in the androgen receptor, estrogen receptor or in the aromatase gene. In transsexuals, reversal of the sex <i>difference</i> in the central nucleus of the bed nucleus of the stria terminalis was observed. The size, type of innervation and neuron number agreed with their gender identity and not with their genetic <i>sex</i> Various structural and functional <i>brain differences</i> related to <i>sexual</i> orientation have now also been reported. Levels of circulating <i>sex</i> steroid <i>hormones</i> , during development and in <i>adulthood</i> , play a critical role in determining physiology and behavior in <i>adulthood</i> . Since the morphologic characteristics of neurons have been shown to influence the functional properties of the neurons, it is likely that these <i>hormone</i> -induced structural changes contribute significantly to the activation of neural circuits necessary for certain. Recent findings suggest that manipulation of <i>sex</i> steroid <i>hormone</i> levels may induce dramatic <i>macroscopic</i> and <i>microscopic</i> structural changes in certain regions of the central nervous system, such as neurons of adult avian song system ,corpus callosum and anterior commissure bubocavernosus spinal nucleus, spinal motor neurons rat Purkinje cell , sexual dimorphic nucleus of preoptic area of hypothalamus (SDN- POA) of hypothalamus, hippocampal pyramidal cells, bed nucleus of humanstria terminalis nigrostriatal dopamine neurons, rat arcuate nucleus, human median raphe nucleus,and substantia nigran. Dorsal raphe nucleus (DRN) is the largest of all raphe nuclei in rat <i>brain</i> stem, and a part of serotonergic system. Studies have also indentified many areas of the <i>brain</i> that are altered during <i>development</i> due to exposure to sex steroids, not only areas closely connected with reproduction, but also in the areas <i>important</i> for <i>emotional responses</i> such as amygdal and even other areas such as hippocampus and cerebellum. Substantial evidence indicates that <i>sex </i>	46	Repetition Antonymy Hyponymy collocation

	addictive drugs such as cocaine and amphetamines, factors that will probably help to explain <i>sex differences</i> in addictive processes. In addition, sex hormones such as oestrogen can alter the excitability of hippocampal cells strongly influence their dendritic structure and augment NMDA (N-methyl-D-aspartate) receptor binding. Intrahippocampal oestrogen infusions modulate memory processes. Finally, <i>sex differences</i> exist in hippocampal long-term potentiation, a phenomenon that is widely viewed to be related to memory processes. Human behavior is also subject to the activational effects of androgens. Transsexuals treated with cross- <i>sex hormones</i> display sex reversals in their cognitive abilities, emotional tendencies, and libido and <i>sex</i> offenders are sometimes treated with antiandrogens to reduce their <i>sex</i> drive		
21	Several studies have suggested that <i>sex</i> steroid hormones might not be the whole answer to <i>sexual</i> differentiation and that <i>sex</i> chromosomes could influence sex specific <i>development</i> . <i>Sex hormones</i> are crucial for many <i>sex differences</i> , but, equally, cannot explain all observed sex <i>differences</i> . For example, a recent study reported several sex <i>differences</i> in cocaine-seeking behavior in rats and, in addition, found that these <i>differences</i> were unaffected by oestrus state [223]. Many of such sex <i>differences</i> described in the <i>human brain</i> arise during <i>development</i> by an interaction of <i>sex hormones</i> and the developing neurons, although direct genetic effects are probably also involved [181]. Factors influencing structural [43] and <i>functional sex differences</i> in the brain are genetic factors like mutations or polymorphisms in the <i>sex hormone</i> receptors, abnormal prenatal hormone levels and compounds such as anticonvulsants, Diethylstilbestrol (an estrogen-like com-pound) and environmental endocrine disrupters. When given during pregnancy they interact with the action of <i>sex hormones</i> on the fetal <i>brain</i> .	46	Repetition collocation
22	Evolution The fundamental neurological substrate that forms the basis for complex cerebral asymmetries in Homo sapiens may have been established remarkably early in anthropoid evolution. In ancient times, both sexes had very defined role that helped ensure the survival of the species. Cave- <i>men</i> hunted while Cave- <i>women</i> gathered food near the home and cared for the children. Brain areas may have been sharpened to enable each sex to carry out their jobs. In evolutionary terms, developing superior navigation skills may have <i>enabled men</i> to become better suited to the role of hunter, while the development by <i>females</i> of a preference for landmarks may have <i>enabled</i> them to fulfill the task of gathering food closer to home [54]. The advantage of <i>women</i> regarding verbal skills also makes evolutionary sense. While <i>men</i> have the bodily strength to compete with other <i>men</i> , women use language to gain social advantage, such as by argumentation and persuasion [54]. Morning sickness, for example, which steers some	46	Antonymy Repetition collocation

	<i>women</i> away from strong tastes and smells, may once have protected babies in utero from toxic items. Infidelity is a way for men to ensure genetic immortality [224]. Tendency toward cortical lateralization has been greatly elaborated in <i>human</i> evolution, such that at least 90% of extant <i>humans</i> are right-handed. Numerous data support an association of the left <i>human</i> hemisphere with time-sequencing, language skills, certain neurochemical asymmetries, and specific psychiatric disorders. The right hemisphere, on the other hand, is associated with holistic processing, visuospatial and musical abilities, <i>emotional processing</i> , and its own neurochemical and psychiatric properties. Significant sexual dimorphism in certain skills associated with cortical lateralization has been reported in <i>humans</i> . <i>Females</i> excel at language and fine motor skills, as well as <i>emotional</i> decoding and expression; <i>males</i> are relatively adept at composing music and exhibit visuospatial and mathematical skills [225]. Evolution can also produce adaptive sex differences in behavior and its neural substrate.		
23	<i>Culture and Socialization</i> Postnatal social factors are generally presumed to be involved in the <i>development</i> of sexual orientation [227, 228]. <i>Females</i> of all ages are better at <i>recognizing emotion</i> or relationships than are <i>men</i> . These sex- determined <i>differences</i> appear in infancy and the gap widens as people mature. When such <i>differences</i> appear early in <i>development</i> , it can be assumed that these <i>differences</i> are programmed into our <i>brains</i> - "hardwired" to use a computer analogy. Sex <i>differences</i> that grow larger throughout childhood however, are probably shaped by culture, lifestyle and training. Studies of <i>brain</i> plasticity have shown us that experience changes our brains structure.	47	Repetition Antonymy collocation
24	At birth, the human <i>brain</i> is still preparing for full operation. The <i>brain's</i> task for the first 3 years is to establish and reinforce connections with other neurons. As a <i>child</i> develops, the synapses become more complex, like a tree with more branches and limbs growing. After <i>age</i> 3, the creation of synapses slows until about <i>age</i> 10. Between birth and <i>age</i> 3, the <i>brain</i> creates more synapses than it needs. The synapses that are used a lot become a permanent part of the <i>brain</i> . The synapses that are not used frequently are eliminated. This is where experience plays an important role in wiring a <i>young child's brain</i> . The <i>child's experiences</i> are the stimulation that sparks the activity between axons and dendrites and creates synapses. Clearly the social <i>experience</i> of a <i>young</i> baby is limited, but even then it is interacting, soaking up <i>experience</i> like a sponge. In an astonishingly short time it becomes proficient in a complicated, not entirely logical language. Even before an infant begins to talk, it understands sentences containing quite complex sequences. It is believed that nurturing one's <i>brain</i> can enhance what nature has provided. There is a lot of evidence that we build up our <i>brain's</i> representation of space by moving through it.	47	Repetition Antonymy Hyponymy collocation

	Boys tend to get a lot more practice "moving through space" than girls		
	do. This <i>difference</i> could possibly be erased if the <i>girls</i> are pushed out		
	into the exploratory mode [97]. There is evidence that learning uses		
	long-term potentiation (LTP) in the <i>cerebral</i> cortex as a way to		
	strengthen synaptic connections between <i>brain</i> cells that are necessary		
	to acquire and store new information [229]. Even with laboratory rats,		
	it has been shown that those reared in a stimulating environment		
	develop a much more intricate cerebral organization than those reared		
	in nothing more than a bare cage. The more prominent sex differences		
	were seen when the rearing <i>environment</i> was varied, with females		
	showing less susceptibility to environmental influences in some		
	neuronal populations [230].		
25	GENDER DIFFERENCES AND LEARNING		
	Research on the <i>differences</i> between <i>male</i> and <i>female</i> brain structure		
	and function has huge implications for educational theory. Male and		
	<i>female brains</i> are wired <i>differently</i> and that is why they learn, feel and		
	react so <i>differently</i> . Studies have shown that <i>girls</i> tend to use the areas		
	of the brain devoted to verbal and emotional functioning, while boys		D
	generally use the areas of the <i>brain</i> geared toward spatial and	10	Repetition
	mechanical tasks [275]. The <i>male brain</i> needs to recharge and reorient	49	Antonymy
	by entering what brain scientists call a rest state. Boys may naturally		
	drift off or "space out" during a lesson. However, they are able to stay		
	engaged in visual or hands-on learning that involves symbols, objects,		
	diagrams and pictures but zone out when too many words are used		
	[276]. Active learning strengthens neuronal pathways, builds new ones		
	and improves memory skills, reasoning and visualization efficiency.		
26	CONCLUSION		
	The male and the female brains show anatomical, functional and		
	biochemical differences in all stages of life. These differences begin		
	early during development due to a combination of genetic and		
	hormonal events and continue throughout the lifespan of an individual,		
	and are involved in many functions in heath as well as in diseases.		A A
	Mental and emotional health is extremely <i>important</i> to healthy aging.	10	Antonymy
	Sex differences need to be considered in studying brain structure and	49	кереппон
	function. It may raise the possibility of early diagnosis and precise		
	treatment and management for neurological diseases, and may help		
	physicians and scientists to discover new diagnostic tools to explore		
	the brain differences . Understanding the development of normal brain		
	and <i>differences</i> between the sexes is <i>important</i> for the interpretation of		
	clinical imaging studies.		