Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation

Summary

Why Data Preprocessing

- Data in the real world is dirty
 - incomplete: Nilai pada atribut kosong
 - e.g., pekerjaan=""
 - noisy: berisi errors atau outliers

e.g., Pendapatan="-10"

- inconsistent: beda pada kode / nama
 - e.g., Umur="42" tgl-lhr="03/07/1997"

e.g., peringkat "1,2,3" - "A, B, C"

Why Is Data Dirty?

- Incomplete data
 - Data yg "Not applicable" ketika dikumpulkan
 - Beda pertimbangan antara saat data dikumpulkan dan saat dianalisis.
 - Permasalahan manusia/hardware/software
- Noisy data (incorrect values)
 - Instruments pengumpulan data yg salah
 - Human /computer error ketika entry data
 - Errors pada transmisi data
- Inconsistent data
 - data sources yg berbeda
- Record yg kembar perlu dilakukan data cleaning

Why Is Data Preprocessing Important?

- Data tdk berkualitas, hasil mining tdk berkualitas!
 - Kualitas Keputusan harus berdasarkan kualitas data
 - e.g., *duplikasi | missing data* menyebabkan statistik yang salah bahkan menyesatkan.
 - Data warehouse membutuhkan integrasi dari data yg berkualitas

Major Tasks in Data Preprocessing

Data cleaning

- Pengisian *missing values*, menghaluskan noisy data, mengidentifikasi/ menghilangkan *outliers*, dan mengatasi inkonsistensi
- Data integration
 - Integrasi beberapa database, data cubes, atau files
- Data transformation
 - Normalization dan aggregation
- Data reduction
 - Mengurangi volume data namun tetap menghasilkan hasil analisis yang sama atau mirip.
- Data discretization
 - bagian dari data reduction untuk data numerik

Forms of Data Preprocessing

Data Cleaning

[water to clean dirty-looking data]

['elean'-looking data]

[show soap suds on data]

Data Integration

Data Transformation

-2, 32, 100, 59, 48

-0.02, 0.32, 1.00, 0.59, 0.48

Data Mining: Concepts and Techniques

6

Chapter 2: Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation

Summary

Chapter 2: Data Preprocessing

- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation

Summary

Data Cleaning

- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

Missing Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred.

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

October 3, 2014

Data Mining: Concepts and Techniques

- Noise: random error or variance in a measured variable
- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning
 - Divides the range into *N* intervals of equal size: uniform grid
 - if *A* and *B* are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into *N* intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Data Mining: Concepts and Techniques

Cluster Analysis

Chapter 2: Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation
- Summary

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id = B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

Data Transformation: Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new _ max_{A} - new _ min_{A}) + new _ min_{A}$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- Z-score normalization (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where *j* is the smallest integer such that Max(|v'|) < 1

Data Mining: Concepts and Techniques

Chapter 2: Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation
- Summary

Data Reduction Strategies

- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Data cube aggregation:
 - Dimensionality reduction e.g., remove unimportant attributes
 - Data Compression
 - Numerosity reduction e.g., fit data into models
 - Discretization and concept hierarchy generation

Data Cube Aggregation

The lowest level of a data cube (base cuboid)

- The aggregated data for an individual entity of interest
- E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Attribute Subset Selection

- Feature selection (i.e., attribute subset selection):
 - Select a minimum set of features such that the probability distribution of different classes given the values for those features is as close as possible to the original distribution given the values of all features
 - reduce # of patterns in the patterns, easier to understand
- Heuristic methods (due to exponential # of choices):
 - Step-wise forward selection
 - Step-wise backward elimination
 - Combining forward selection and backward elimination
 - Decision-tree induction

Example of Decision Tree Induction

----> Reduced attribute set: {A1, A4, A6}

Heuristic Feature Selection Methods

- There are 2^d possible sub-features of *d* features
- Several heuristic feature selection methods:
 - Best single features under the feature independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-feature is picked first
 - Then next best feature condition to the first, ...
 - Step-wise feature elimination:
 - Repeatedly eliminate the worst feature
 - Best combined feature selection and elimination
 - Optimal branch and bound:
 - Use feature elimination and backtracking

Dimensionality Reduction: Principal Component Analysis (PCA)

- Given *N* data vectors from *n*-dimensions, find $k \le n$ orthogonal vectors (*principal components*) that can be best used to represent data
- Steps
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the weak components, i.e., those with low variance. (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data
- Works for numeric data only
- Used when the number of dimensions is large

October 3, 2014

Data Mining: Concepts and Techniques

Principal Component Analysis

Chapter 2: Data Preprocessing

- Why preprocess the data?
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation

Summary

Summary

- Data preparation or preprocessing is a big issue for both data warehousing and data mining
- Discriptive data summarization is need for quality data preprocessing
- Data preparation includes
 - Data cleaning and data integration
 - Data reduction and feature selection
 - Discretization
- A lot a methods have been developed but data preprocessing still an active area of research

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Communications of ACM, 42:73-78, 1999
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
- T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. <u>Mining Database Structure</u>; Or, How to Build <u>a Data Quality Browser</u>. SIGMOD'02.
- H.V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), December 1997
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. *IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4*
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
- Y. Wand and R. Wang. Anchoring data quality dimensions ontological foundations. Communications of ACM, 39:86-95, 1996
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
 Knowledge and Data Engineering, 7:623-640, 1995

October 3, 2014

Data Mining: Concepts and Techniques