Operating

Systems:
Internals.
and Design Cha.ptc?r 3
Prnciples- | Process Description

and Control

Seventh Edition
By William Stallings

k T
A

Operating Systems:
Internals and Design Principles

The concept of process is fundamental to the structure of
modern computer operating systems. Its evolution in
analyzing problems of synchronization, deadlock, and
scheduling in operating systems has been a major
Intellectual contribution of computer science.

WHAT CAN BE AUTOMATED?:

THE COMPUTER SCIENCE AND
ENGINEERING RESEARCH STUDY,
MIT Press, 1980

Summary. of Earller
~Concepts

m A computer platform m The OS was developed to
consists of a collection provide a convenient,

of hardware resour :
S feature-rich, secure, and

consistent interface for

m Computer applications applications to use

are developed to
perform some task m We can think of the OS as

T A providing a uniform,
m [t 1s mefficient for ,
applications to be abstract representation of

written directly for a resources that can be
given hardware platform requested and accessed by
applications

OS Management of
Application Execution

m Resources are made available to multiple
applications

m The processor 1s switched among multiple
applications so all will appear to be
progressing

m The processor and I/0 devices can be
used efficiently

m Two essential elements of a process are:

® which may be shared with other processes that are executing
the same program

A set of data associated with that code

. When the processor begins to execute the program code, we refer to
this executing entity as a process

S
3

Process Elements

m While the program is executing, this process can be uniquely
characterized by a number of elements, including;:

memory
pointers

1dentifier

program
counter

priority

I/0 status accounting

context data | . : : :
information information

Identifier

Process Control e
Priority

B 1 O Ck Program counter

Memory pointers

Context data
=Contains the process elements 1O ctat
stains
Y f A mformation
=]t 1S possible to interrupt a
Accounting

running process and later resume
execution as if the interruption
had not occurred

mformation

=Created and managed by the
operating system

=Key tool that allows support for
multiple processes Figure 3.1 Simplified Process Control Block

Process States

Trace

A

the behavior of an
individual process
by listing the
sequence of
Instructions that
execute for that

~

process
/

Dispatcher

/

can be characterized by
showing how the traces of
the various processes are
interleaved

~N

the behavior of the processor

/

small program

processor from
one process to
another

~N

that switches the

Address N ain Memory

100

Dispatcher

Process

Executlon Process A

QQ@\&; }>L) Process C
LS

5000 2000 12000

5001 2001 12001

5002 2002 12002

Traces of 5003 8003 12003
5004 12004

5005 12005

PI‘OCCSSCS 5006 12006
5007 12007

5008 12008

Of 5009 12009

5010 12010

5011 12011

Figure 3 ® 2 {a) Trace of Process A (b} Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.3

Combined
Trace of
Processes
of

Figure 3.2

1 5000 27 12004
2 5001 28 12005
3 s002 e
4 5003 29 100

5 5004 30 101

& 5005 31 102
——————————————————— Timeout 32 103

7 100 33 104

8 101 34 105

9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
1s 802
16 8003 41 100
--------------- I/O Request 42 101

17 100 43 102
18 101 44 103
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process,;
first and third colunms count instruction cycles;
second and fourth columns show address of instroction being executed

Figure 3.4

- Two-State Process Model

m A process may be in one of two states:
B running

m not-running

Dispatch

/_\

Enter Not ; Exit
Running Running -

\/

Pause

{a) State transition diagram

Queuing Diagram

Queue
Enter

'

R,
l Diﬁpamh . —
Processor

Pause

(k) Queuning diagram

Table 3.1 Reasons for Process

Creation

New batch job The OS is provided with a batch job control stream, usually
on tape or disk. When the OS is prepared to take on new
work, it will read the next sequence of job control
commands.

Interactive logon A user at a terminal logs on to the system.

Created by OS to provide a service The OS can create a process to perform a function on
behalf of a user program, without the user having to wait
(e.g., a process to control printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

~ Process Creation

Process .

* when the * 1s the * 1s the new
OS creates a original, PIroOCess
process at creating,
the explicit ProCess
request of
another
process

Process Termination

m There must be a means for a process to indicate its
completion

m A batch job should include a HALT 1instruction or an
explicit OS service call for termination

m For an interactive application, the action of the user will
indicate when the process 1s completed (e.g. log off,
quitting an application) -

b
S0P

Table 3.2

Reasons
for Process
Termination

Normal completion

Time limit exceeded

Memory unavailable

Bounds violation

Protection error

Arithmetic error

Time overrun

I/O failure

Invalid instruction

Privileged instruction

Data misuse

Operator or OS intervention

Parent termination

Parent request

The process executes an OS service call to indicate that it has
completed running.

The process has run longer than the specified total time limit. There are
a number of possibilities for the type of time that is measured. These
include total elapsed time ("wall clock time"), amount of time spent
executing, and, in the case of an interactive process, the amount of time
since the user last provided any input.

The process requires more memory than the system can provide.

The process tries to access a memory location that it is not allowed to
access.

The process attempts to use a resource such as a file that it is not
allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

The process tries a prohibited computation, such as division by zero, or
tries to store numbers larger than the hardware can accommodate.

The process has waited longer than a specified maximum for a certain
event to occur.

An error occurs during input or output, such as inability to find a file,
failure to read or write after a specified maximum number of tries
(when, for example, a defective area is encountered on a tape), or
invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a result
of branching into a data area and attempting to execute the data).

The process attempts to use an instruction reserved for the operating
system.

A piece of data is of the wrong type or is not initialized.

For some reason, the operator or the operating system has terminated
the process (e.g., if a deadlock exists).

When a parent terminates, the operating system may automatically
terminate all of the offspring of that parent.

A parent process typically has the authority to terminate any of its
offspring.

Five-State Process Model

—_—
New e Ready Rumning e R Exit
e
l Timeout
Event
Occurs Event
Wait
Blocked

Figure 3.6 Five-State Process Model

Process States for Trace of Figure 3.4

Process A

Process C

Dispatcher
|Illl|IllllllII‘IIIl|lIIl|IIlI|IlII|lIII lIII|lIIl|II
0 5 10 15 20 25 30 35 40 45 50

= Running = Ready - = Blocked

Figure 3.7 Process States for Trace of Figure 3.4

Using Two Queues

Ready Quene ==t Release
Admit Dispatch
] Procesr
Timeout
Blocked Quene

Event llllll Event Wait
Occurs

(a) Single blocked guene

Multiple

Release

_

Ready Quene S —— 1
Admit Dispatch
: ‘. i 1 Processor
Blocked
Timeout
il
Queues
Event 1 Quene Event 1 Wait
ven ai
Event 1 I ot
Occurs
Event 2 Quene
Event 2 st Event 2 Wait
Occurs
L |
L
L |
Event n Quene
Event n Event n Wait
Occurs

(b) Multiple blocked guenes

A‘
(X5

Suspended Processes

m Swapping
m involves moving part of all of a process from main memory to disk
m when none of the processes in main memory 1s in the Ready state, the

OS swaps one of the blocked processes out on to disk into a suspend
queue

One Suspend State

Admit M‘. Release
New === Ready _g Running == Exit
Timeout
3
=|E

Suspend
Suspend - Blocked

(a) With One Suspend State

Two Suspend States

New
LY
\‘ ’
L
1“%_.. 1
- - b f " 3
Y L2
'#"' ‘ "‘-.q_
o » ﬁ.ﬂi‘fﬂlE* Dispatch ™+, Rel
Ay - O . - . elpase
r 1 1 ﬁ 1
Suspend === === Ready _-______Lllmmmg Exit
‘ Suspend * Timeout
= : & — : g
o= vl s
=15 - 15
== 1 -
1 1
! Activate !

Blocked/ s——
Brend Blocked
Suspend

(b) With Two Suspend States

Characteristics of a
Suspended Process

m The process 1s not m The process may or may
immediately available not be waiting on an
for execution event

m The process was placed
in a suspended state by
an agent: either itself, a
parent process, or the
OS, for the purpose of
preventing its execution

m The process may not be
removed from this state
until the agent explicitly
orders the removal

Reasons for Process Suspension

Swapping

Other OS reason

Interactive user request

Timing

Parent process request

The OS needs to release sufficient main memory to
bring in a process that is ready to execute.

The OS may suspend a background or utility
process or a process that is suspected of causing a
problem.

A user may wish to suspend execution of a program
for purposes of debugging or in connection with the
use of a resource.

A process may be executed periodically (e.g., an
accounting or system monitoring process) and may
be suspended while waiting for the next time
interval.

A parent process may wish to suspend execution of
a descendent to examine or modify the suspended
process, or to coordinate the activity of various

descendants.

Table 3.3 Reasons for Process Suspension

Processes and Resources

Virtual
Memory

f‘
- T
/ \ Computer
Resonrces

Processor 1[0 IO MMH"]
emory

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

OS
Control
Tables

g

Process
Image

Process

e fite-] Memiory Tables
Memory
T P~ /O Tables
Files
Processes ————f*{ File Tables
Primary Process Table
= Process 1
Process 2
Process 3
| |
| |
Process i

Figure 3.11

Process
Image

Process

General Structure of Operating System Control Tables

“Memory Tables -

m Used to keep track of both
main (real) and secondary
(virtual) memory

m Processes are maintained
on secondary memory
using some sort of virtual
memory or simple
swapping mechanism

a . O
Must 1include:

allocation of main memory to
processes

allocation of secondary
memory to processes

protection attributes of blocks
of main or virtual memory

information needed to manage

virtual memory

_ /

I/0 Tables

m Used by the OS to manage
the I/0 devices and
channels of the computer
system

m At any given time, an I/O
device may be available or
assigned to a particular
process

ar; an I/0 operation 1s in \
progress, the OS needs to
know:

the status of the I/0

operation

the location 1n main
memory being used as the

source or destination of
the I/0O transfer

. ’_-F-hse tables provide

information about:

e existence of files

* Jocation on secondary
memory

* current status

m In rstem

e other attributes

m |n OTNer operatmg SySIems, MUCch O TNe detail O I Management 1s
managed by the OS itself

Process Tables

m Must be maintained to manage processes

m There must be some reference to memory,
I/0, and files, directly or indirectly

m The tables themselves must be accessible by
the OS and therefore are subject to memory
management

“Process Control Structures

To manage Bt

and process 1s
control a s
n * the attributes of
process the o process that

OS must are necessary for
know: 1ts management

. Process Control
Structures:

Process Location

m A process must include a

program or set of programs to be
executed

A process will consist of at least
sufficient memory to hold the
programs and data of that
process

The execution of a program
typically involves a stack that is
used to keep track of procedure
calls and parameter passing
between procedures

Process Attributes

Each process has associated with
it a number of attributes that are
used by the OS for process
control

The collection of program, data,
stack, and attributes is referred to
as the process image

Process image location will
depend on the memory
management scheme being used

Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack
area, and programs that may be modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system
calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

Process Attributes

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include
e[dentifier of this process
eIdentifier of the process that created this process (parent process)
*User identifier

Processor State Information

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that
the processor executes while in user mode. Typically, there are from 8 to 32 of these
registers, although some RISC implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the
processor. These include
*Program counter: Contains the address of the next instruction to be fetched
*Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign,
zero, carry, equal, overflow)
eStatus information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls. The
stack pointer points to the top of the stack.

Process Identification

m Memory tables may be

m FEach process 1s assigned a organized to provide a map of
unique numeric identifier main memory with an indication
, of which process 1s assigned to
m otherwise there must be a each region
mapping that allows Fhe OS m similar references will appear in
to locate the appropriate I/0 and file tables
tables based on the process ;
: - m When processes communicate
identifier

with one another, the process

identifier informs the OS of the
m Many of the tables controlled by destination of a particular

the OS may use process communication
identifiers to cross-reference

process tables m When processes are allowed to

create other processes,
identifiers indicate the parent
and descendents of each
process

Processor State Information

Consists of the Program status word

contents of (PSW)

D O CBISIere * contains condition codes

« user-visible registers plus other status

» control and status information . :
registers « EFLAGS register 1s an

. stack pointers example of a PSW used by

any OS running on an x86
Processor

X86 EFLAGS Register

[=]

] 1]
—_—
-
e
=

16 /15
"[YIA|IV|R N|l IO [ODI|T|S|Z A P
p|F|C|M|F T| PL |F|F|F|F|F|F F F

ID
VIP
VIF
AC
VM

NT
IOPL
OF

Identification flag DF = Direction flag
Virtual mtermupt pending IF = Intermupt enable flag
Virtual mtemmpt flag TF = Trap flag
Alignment check SF = 5ign flag

= Virtual 8086 mode ZF = Zero flag
Resume flag AF = Auxihary camry flag
Nested task flag PF = Party flag
IO prvilege level CF = Camry flag

Overflow flag

Figure 3.12 Pentium II EFLAGS Register

Table 3.6
Pentium
EFLAGS
Register

Bits

Control Bits

AC (Alignment check)
Set if a word or doubleword is addressed on a
nonword or nondoubleword boundary.

ID (Identification flag)
If this bit can be set and cleared, this processor
supports the CPUID instruction. This instruction
provides information about the vendor, family,
and model.

RF (Resume flag)
Allows the programmer to disable debug
exceptions so that the instruction can be restarted
after a debug exception without immediately
causing another debug exception.

IOPL (/O privilege level)
When set, causes the processor to generate an
exception on all accesses to 1/O devices during
protected mode operation.

DF (Direction flag)
Determines whether string processing instructions
increment or decrement the 16-bit half-registers
ST and DI (for 16-bit operations) or the 32-bit
registers ESI and EDI (for 32-bit operations).

IF (Interrupt enable flag)
When set, the processor will recognize external
interrupts.

TF (Trap flag)
When set, causes an interrupt after the execution
of each instruction. This is used for debugging.

Operating Mode Bits
NT (Nested task flag)

Indicates that the current task is nested
within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable
virtual 8086 mode, which determines whether the
processor runs as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or
more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

Condition Codes

AF (Auxiliary carry flag)
Represents carrying or borrowing between half-
bytes of an 8-bit arithmetic or logic operation
using the AL register.

CF (Carry flag)
Indicates carrying out or borrowing into the
leftmost bit position following an arithmetic
operation. Also modified by some of the shift and
rotate operations.

OF (Overflow flag)
Indicates an arithmetic overflow after an addition
or subtraction.

PF (Parity flag)
Parity of the result of an arithmetic or logic
operation. | indicates even parity; 0 indicates odd
parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or
logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic
operation is 0.

Process Control
Information

m The additional information needed by the OS to
control and coordinate the various active
processes

Process Control Information

Typical Scheduling and State Information

This is information that is needed by the operating system to perform its scheduling function. Typical
ttems of intormation:
*Process state: Defines the readiness of the process to be scheduled for execution (e.g.. running,
ready, waiting, halted).
*Priority: One or more fields may be used to describe the scheduling priority of the process. In
Elements some systems. several values are reguired (e.o.. defaolt, current, highest-allowable)
*Scheduling-related information: This will depend on the scheduling algorithm used. Examples
are the amount of time that the process has been waiting and the amount of time that the process
executed the last time it was running.
*Event: Identity of event the process is awaiting before it can be resumed.

Of a Process Data Structuring

A process may be Iinked to other process i a gueue, ring, or some other structure. For example, all
processes Ina waling state for a paricular pnority level may be linked in a queue. A process may
exhibit a parent-child {creator-created) relationship with another process. The process control block
may contain poanters to other processes to support these structures.

C Ontl'()l BlOCk Interprocess Communication

Varnous flags, signals, and messages may be associated with communication between baro
independent processes. Some or all of this information mav be maintained in the process control
block.

Process Privileges
Processes are granted privileges in terms of the memaory that may be accessed and the types of
instructions that may be executed. In addition, privileges may apply to the use of system utilities and
SETVICES.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory

. — (= assigned o this process.
o o % Resource Ownership and Utilization
OO OO [, Resources controlled by the process may be indicated., such as opened files. A history of utilization of

Q the processor or other resources may also be included; this information may be needed by the
scheduler.

Structure of Process
Images in Virtual Memory

Process Process Process
identification idertifi cation identification
Procossor state Procossor state Procassor state
infarmatian imformaticn informati on
Process control Process control Process control
infarmation information irformati on
Ll=ar stack lser stack Llser stack
Private user Private usar Private user
address space address space address space
(programs, data) {programs, data) {programs, data)

! I ! I ! I
i ! i ! i !
| Shared address | | Shared address ! | Shared address !
! space . ! space . ! space .
I l I l I l
i j i j i j
Process 1 Process 2 Process n

Figure 313 User Processes in Virtual Memory

Process List Structures

Process
Control Block

Running EE—

Ready

Blocked

Figure 3.14 Process List Structures

Role of the
Process Control Block

m The most important data structure in an OS
m contains all of the information about a process that is needed by the OS
m blocks are read and/or modified by virtually every module in the OS
m defines the state of the OS

m Difficulty is not access, but protection

m a bug in a single routine could damage process control blocks, which
could destroy the system’s ability to manage the affected processes

m a design change in the structure or semantics of the process control
block could affect a number of modules in the OS

Modes of Execution

User Mode System Mode
m less-privileged mode = more-privileged mode
B user programs m also referred to as
typically execute in control mode or
this mode kernel mode

m kernel of the

operating system /\

/

Table 3.7
Typical
Functions
of an
Operating
System

Kernel

Process Management

*Process creation and termination
*Process scheduling and dispatching
*Process switching

*Process synchronization and support for interprocess communication
*Management of process control blocks

Memory Management
*Allocation of address space to processes
*Swapping
*Page and segment management

I/O Management

*Buffer management
*Allocation of I/O channels and devices to processes

Support Functions

e[nterrupt handling
*Accounting
*Monitoring

Process Creation

m Once the OS decides to create a new process it:

assigns a unique process identifier
to the new process ‘
allocates space for the process

initializes the process control
block
sets the appropriate linkages

creates or expands other data
structures

Process Switching

A process switch may occur any time that the OS has gained control from the
currently running process. Possible events giving OS control are:

Mechanism Cause

Use

Interrupt External to the execution of the
current instruction

Trap Associated with the execution of
the current instruction

Supervisor call Explicit request

Reaction to an asynchronous
external event

Handling of an error or an
exception condition

Call to an operating system
function

~ System Interrupts.

Interrupt Trap

m Due to some sort of event m An error or exception
that 1s external to and
independent of the currently
running process

a clock interrupt m OS determines if the

condition is fatal

condition generated within
the currently running process

m [/O interrupt

m memory fault m moved to the Exit state
m Time slice and a process switch
m the maximum amount of occ.urs :
time that a process can m action will depend on the
execute before being nature of the error

interrupted

“Mode Switching

If no interrupts are
pending the processor:

If an interrupt 1s
pending the processor:

\ 4

proceeds to the fetch stage and fetches
the next instruction of the current
program in the current process

9

()

sets the program counter to the starting
address of an interrupt handler program

| J

\ 4

()

switches from user mode to kernel mode
so that the interrupt processing code may
include privileged instructions

| J

Change of Process S-tate

m The steps 1n update the process

a full process save the context of control block of

3 g the processor the process
switch are: currently in the

Running state

move the process
control block of

this process to the

appropriate queue

If the currently running process is to be moved to
another state (Ready, Blocked, etc.), then the OS select another

must make substantial changes in its environment process for
execution

restore the context
of the processor to
that which existed

update the process
control block of
the process
selected

at the time the update memory

selected process was
last switched out

management data
structures

Execution
of the
Operating
System

Eernel
(a) Separate kernel
Py Py P,
05 05 05
Fumnec- [Func LI BN [Funec
HoTms tioms toms
Process Switching Functions

(b) OS5 functions execute within user processes

P Py wue |Py 05,

e N Gsi.'

Process Switching Functions

(c) 05 functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

. Process
identification

P'I'_IIII:E.'S-SIIIF state I Process control
infoarmatian block

Process control

ExeCUtion Wz.thin information
User Processes Llser stack

Private user
address space
(programs, data)

Kernel stack

space

[
|
: Shared address
l
1
[
[

Figure 3.16 Process Image: Operating
System Executes within
User Space

Security Issues

m An OS associates a set of privileges with each process

m Typically a process that executes on behalf of a user has the
privileges that the OS recognizes for that user

m Highest level of privilege 1s referred to as adminstrator, supervisor,
Or 100t access

m A key security issue in the design of any OS 1is =
to prevent, or at least detect, attempts by a user or
malware from gaining unauthorized privileges
on the system and from gaining root access J,

System Access Threats

Intruders Malicious Software
m Often referred to as a hacker or m Most sophisticated types of threats
cracker to computer systems

* those that need a host program (parasitic)

» Masquerader >
« Misfeasor N / ® » viruses, logic bombs, backdoors
« Clandestine user A - those that are independent

* worms, bots

m Objective is to gain access to a
system or to increase the range of

privileges accessible on a system m Can be relatively
harmless or very
m Attempts to acquire information that damaging

should have been protected

Countermeasures.
Intrusmn Detectlon

“A security service that monitors and analyzes system events for the
purpose of finding, and providing real-time or near real-time warning

of, attempts to access system resources in an unauthorized manner”
(RFC 2828)

May be host or network based

An intrusion detection system (IDS) comprises three logical
components:

user
interface

sensors analyzers

IDSs are typically designed to detect human intruder behavior as well
as malicious software behavior

Countermeasures:
Authentication

m “The process of verifying
an identity claimed by or

for a system entity.”

(RFC2828) something
the
individual
knows

m An authentication process
consists of two steps:

m Identification

m Verification

m Four general means of

authenticating a user’s something the

identitv: individual
Y possesses

something the
individual does
(dynamic

biometrics)

 ‘Countermeasures:
Access:Control

m Implements a security policy that specifies who or what may have
access to each specific system resource and the type of access that
1s permitted in each instance

m Mediates between a user and system resources
m A security administrator maintains an authorization database

m An auditing function monitors and keeps a record of user accesses
to system resources

Countermeasures.
- Firewalls

» interfaces with computers
outside a network

* has special security
ComPUter - precautions built into it to
h . protect sensitive files on
that: computers within the network

A dedicated

» all traffic must pass through

D 681 gn the firewall

» only authorized traffic will be
allowed to pass

goals of a
ﬁrewall' » immune to penetration

Il

e

Unix SVR4 *

m Uses the model where most of the OS executes within the
environment of a user process

m System processes run in kernel mode

m executes operating system code to perform administrative and
housekeeping functions

m User Processes
m operate in user mode to execute user programs and utilities
m operate in kernel mode to execute instructions that belong to the kernel

m enter kernel mode by issuing a system call, when an exception is
generated, or when an interrupt occurs

UNIX Process States

User Running
Kernel Running
Ready to Run, im Memory

Asleep m Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Lombie

Executing in user mode.
Executing in kemel mode.
Feadvtorun as soon as the kemel schedules it.

Unable to execute until an event occurs; process 1s in main memory
(a blocked state).

Process is readv to run, but the swapper must swap the process into
main memory before the kemnel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondarv storage (a blocked state).

Process is returning from kemel to user mode, but the kemel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready torun.

Process no longer exists, but it leaves a record forits parent process
to collect.

UNIX Process State Transition Diagram

fork
Created
Preempted
return e enough not enough memory
to nser Fy e mMEemory, (swapping system only)
Y
LY
LY
-
Uiser i ¢ "i‘
Running preempy ~
swap out
return Ready fo Run: P Ready fo Run
reschedule : ;
In Memory 4 — Swapped
process = swap in
system call,
interrupt Kernel Fy FY
Running
interrupt, sleep wakeup wakeup
imterrupt return exit
;i Asleep in SWap ouk Sleep,
e hic Memory g Swapped

Figure 3.17 UNIX Process State Transition Diagram

A Unix
Process

Process text
Process data
User stack

Shared memory

User-Level Context

Executable machine instructions of the program

Data accessible by the program of this process

Contains the arguments, local variables, and pointers for
functions executing in user mode

Memory shared with other processes, used for interprocess
communication

Program counter
Processor status register
Stack pointer

General-purpose registers

Register Context

Address of next instruction to be executed; may be in
kernel or user memory space of this process

Contains the hardware status at the time of preemption;
contents and format are hardware dependent

Points to the top of the kernel or user stack, depending on
the mode of operation at the time or preemption
Hardware dependent

Process table entry
U (user) area

Per process region table

Kernel stack

System-Level Context

Defines state of a process; this information is always
accessible to the operating system

Process control information that needs to be accessed only
in the context of the process

Defines the mapping from virtual to physical addresses;
also contains a permission field that indicates the type of
access allowed the process: read-only, read-write, or read-
execute

Contains the stack frame of kernel procedures as the
process executes in kernel mode

Table 3.11
UNIX

Process
Table Entry

Process status
Pointers

Process size

User identifiers

Process identifiers

Event descriptor

Priority
Signal

Timers

P_link

Memory status

Current state of process.
To U area and process memory area (text, data, stack).

Enables the operating system to know how much space to
allocate the process.

The real user ID identifies the user who is responsible for
the running process. The effective user ID may be used by
a process to gain temporary privileges associated with a
particular program; while that program is being executed as
part of the process, the process operates with the effective
user ID.

ID of this process; ID of parent process. These are set up
when the process enters the Created state during the fork
system call.

Valid when a process is in a sleeping state; when the event
occurs, the process is transferred to a ready-to-run state.

Used for process scheduling.
Enumerates signals sent to a process but not yet handled.

Include process execution time, kernel resource utilization,
and user-set timer used to send alarm signal to a process.

Pointer to the next link in the ready queue (valid if process
is ready to execute).

Indicates whether process image is in main memory or
swapped out. If it is in memory, this field also indicates
whether it may be swapped out or is temporarily locked
into main memory.

Table 3.12
UNIX U

Area

)

._":;:;'..-Jl
EEREERY |

Il

- e LSOO

.\u.,,-x.—..-w—\-—!

Process table pointer

User identifiers

Timers

Signal-handler array

Control terminal
Error field
Return value

I/O parameters

File parameters

User file descriptor table

Limit fields

Permission modes fields

Indicates entry that corresponds to the U area.

Real and effective user IDs. Used to determine user
privileges.

Record time that the process (and its descendants) spent
executing in user mode and in kernel mode.

For each type of signal defined in the system, indicates how
the process will react to receipt of that signal (exit, ignore,
execute specified user function).

Indicates login terminal for this process, if one exists.
Records errors encountered during a system call.

Contains the result of system calls.

Describe the amount of data to transfer, the address of the
source (or target) data array in user space, and file offsets

for I/0.

Current directory and current root describe the file system
environment of the process.

Records the files the process has opened.

Restrict the size of the process and the size of a file it can
write.

Mask mode settings on files the process creates.

Process Creation

m Process Allocate a slot in the process table for the new process

creation 1s by

means of the

» Assign a unique process ID to the child process
kernel system

call, fork()

» Make a copy of the process image of the parent, with the
exception of any shared memory

m This causes the

» Increments counters for any files owned by the parent, to
reflect that an additional process now also owns those files

OS, 1n Kernel
Mode, to:

 Assigns the child process to the Ready to Run state

» Returns the ID number of the child to the parent process,
and a 0 value to the child process

N
.
¥

After Creation ~ = .

m After creating the process the Kernel can do one of the
following, as part of the dispatcher routine:

m stay in the parent process
m transfer control to the child process
m transfer control to another process

&y

)
B

Summary

The most fundamental concept in a modern OS 1is the process

The principal function of the OS is to create, manage, and terminate
processes

Process control block contains all of the information that 1s required for
the OS to manage the process, including its current state, resources
allocated to it, priority, and other relevant data

The most important states are Ready, Running and Blocked

The running process is the one that is currently being executed by the
processor

A blocked process is waiting for the completion of some event

A running process 1s interrupted either by an interrupt or by executing
a supervisor call to the OS

