
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Outline

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

 Examples of IPC Systems

 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process -- a
program in execution, which forms the basis
of all computation

 To describe the various features of processes,
including scheduling, creation and
termination, and communication

 To describe communication in client-server
systems

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An OS executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution
must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: being created

 running: instructions are being executed

 waiting: waiting for some event to occur

 ready: waiting to be assigned to a processor

 terminated: has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch from Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in
main memory, ready and waiting to execute

 Device queues – set of processes waiting for an
I/O device

 Processes migrate among various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue and Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects
which processes should be brought into the
ready queue

 Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

swapping

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler: invoked very frequently
(milliseconds)  (must be fast)

 Long-term scheduler: invoked very infrequently
(seconds, minutes)  (may be slow)

 The long-term scheduler controls the degree of
multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing
computations; few very long CPU bursts

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no
useful work while switching

 Time dependent on hardware support

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the process’
memory space with a new program

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process
(Fig. 3.10)

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Win32 API (Fig. 3.12)

 CreateProcess()

 Similar to fork() in UNIX

 WaitForSingleObject()

 Similar to wait() in UNIX

 CloseHandle()

 Similar to exit() in UNIX

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Tree of Processes on a Typical Solaris

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the OS to
delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by OS

 Parent may terminate execution of children
processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some OS do not allow child to continue if its parent
terminates

– All children terminated - cascading termination

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or
cooperating

 Cooperating process can affect or be affected by other
processes, including sharing data

 Cooperating processes need interprocess communication
(IPC)

 Two models of IPC

 Shared memory

 Message passing

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the
execution of another process

 Cooperating process can affect or be affected by the
execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process

 unbounded-buffer: no practical limit on buffer size

 bounded-buffer: a fixed buffer size

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use
BUFFER_SIZE-1 elements

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer (Fig. 3.14)

while (true) {

/* Produce an item */

while (((in + 1) % BUFFER_SIZE) ==

out)

; // do nothing - no free buffers

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer (Fig. 3.15)

while (true) {

while (in == out)

; // do nothing -- nothing to

consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each
other without resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of
communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate
fixed or variable?

 Is a link unidirectional or bi-directional?

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Communication

 Processes must name each other explicitly:

 send(P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating
processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Messages are directed and received from mailboxes
(also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication
links

 Link may be unidirectional or bi-directional

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver

 Sender is notified who the receiver was

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization

 Message passing may be either blocking or non-
blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is
received

 Blocking receive has the receiver block until a message is
available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and
continue

 Non-blocking receive has the receiver receive a valid
message or null

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Buffering

 Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – POSIX
(Fig. 3.16)

 POSIX Shared Memory

 Process first creates shared memory segment

seg_id = shmget(IPC_PRIVATE, size, S_IRUSR |

S_IWUSR);

 Process wanting access to that shared memory must attach to it

shared_memory = (char *) shmat(seg_id, NULL, 0);

 Now the process could write to the shared memory

sprintf(shared_memory, "Writing to shared

memory");

 When done a process can detach the shared memory from its
address space

shmdt(shared_memory);

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - Mach

 Mach: communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation - Kernel and Notify

 Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for communication, created via

port_allocate()

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC)
facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain
communication channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object

 The client sends a connection request

 The server creates two private communication ports and returns the
handle to one of them to the client

 The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Local Procedure Calls in Windows XP

3.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

3.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Sockets

 A socket: an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625: port 1625 on host 161.25.19.8

 Communication consists of a pair of sockets

3.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Socket Communication

3.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

BSD Socket

 BSD Socket

 socket()

 close()

 Server

 bind()

 listen()

 accept()

 Client

 connect()

 Data transfer

 send()/read()

 recv()/write()

3.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example Java Socket Programs

 An example Date server (Fig. 3.19)

 ServerSocket

 Socket

 accept()

 getOutputStream()

 close()

 An example Date client (Fig. 3.20)

 Socket

 getInputStream()

3.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the
server

 The client-side stub locates the server and marshalls the
parameters

 The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on
the server

3.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Execution of RPC

3.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pipes

 Acts as a conduit allowing two processes to
communicate

 Issues

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e. parent-child) between the
communicating processes?

 Can the pipes be used over a network?

3.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard
producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the
pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between
communicating processes

3.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes

3.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ordinary Pipes in UNIX

 (Fig. 3.23 & Fig. 3.24)

 Functions

 pipe()

 read()

 write()

 close()

3.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Anonymous Pipes in Windows

 (Fig. 3.25-3.27)

 Functions

 CreatePipe()

 WriteFile()

 ReadFile()

 CloseHandle()

3.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the
communicating processes

 Several processes can use the named pipe for
communication

 Provided on both UNIX and Windows systems

3.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Named Pipes in UNIX and Windows

 FIFO in UNIX

 mkfifo()

 open()

 read()

 write()

 close()

 Named pipes in Windows

 CreateNamedPipe()

 ConnectNamedPipe()

 ReadFile()

 WriteFile()

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

