Chapter 3: Processes

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

4
Y,

r &l Outline

B Process Concept

B Process Scheduling

B Operations on Processes

B Interprocess Communication
B Examples of IPC Systems

B Communication in Client-Server Systems

e ——

‘\)
2 N ,\V”\‘\‘
& o
,:ﬂ’},h\\x\
Oy’
%
WS
“ PUU

Operating System Concepts — 8t Edition 3.2 Silberschatz, Galvin and Gagne ©2009

=

gy
‘.r-“-’”’r N g] °
20 Objectives

B To introduce the notion of a process -- a
program in execution, which forms the basis
of all computation

B To describe the various features of processes,
including scheduling, creation and
termination, and communication

B To describe communication in client-server
systems

QY
4 ",\,{
A 29X

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.3

=

N
r ﬁml

B An OS executes a variety of programs:
® Batch system - jobs
® Time-shared systems - user programs or tasks

® Textbook uses the terms job and process almost interchangeably

B Process - a program in execution; process execution
must progress in sequential fashion

® A process includes:
» program counter
» stack

» data section

S ~ ‘i*‘\‘l
s /

A48

e ——

Operating System Concepts — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2009

s Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8t Edition 35 Silberschatz, Galvin and Gagne ©2009

Process State

B Asa process executes, it changes state

new: being created

running: instructions are being executed
waiting: waiting for some event to occur
ready: waiting to be assigned to a processor

terminated: has finished execution

Operating System Concepts — 8" Edition 3.6

Silberschatz, Galvin and Gagne ©2009

WAL
> \\

PA

7

Operating System Concepts — 8t Edition 3.7 Silberschatz, Galvin and Gagne ©2009

“$7” Process Control Block (PCB)

Information associated with each process
B Process state

B Program counter

B CPU registers

B CPU scheduling information

B Memory-management information

B Accounting information

B I/O status information

\¥
N ARy
> ¥\
- «:S\ N
i)p"»ﬁ«\:\\
: >.‘v
w(
5
oGl ~4¥‘."‘

Operating System Concepts — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

- Process Control Block (PCB)

Operating System Concepts — 8" Edition

process state

process number

program counter

reqgisters

memory limits

list of open files

3.9

> k
”—
A “ ‘i\ﬁ\‘l\
_w
.“)
“l A%

Silberschatz, Galvin and Gagne ©2009

“$¥” CPU Switch from Process to Process

process P, operating system process P,

interrupt or system call

executing J /
¥ =
T save state into PCB,
. - idle
reload state from PCB, 1
>idle interrupt or system call executing
‘, ~—y
save state into PCB;
. > idle
) reload state from PCB, J
executing | _‘¥
L'

Operating System Concepts — 8t Edition 3.10 Silberschatz, Galvin and Gagne ©2009

557 Process Scheduling Queues

B Job queue - set of all processes in the system

B Ready queue - set of all processes residing in
main memory, ready and waiting to execute

B Device queues - set of processes waiting for an
I/O device

B Processes migrate among various queues

e ——

p o W(
“ 298

Operating System Concepts — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©2009

\)
(P
1&.\?\

14
e\

Ready Queue and Various I/O Device Queues

queue header PCB, PCB,
ready head »
queue tail registers registers
° L
L e
L] L]
mag head +—=
tape _ =
unit 0 tail =
tmag head +——=
ape
Jabs @l —. PCB PCB,, PCB,
/ B
disk head 4
PCB.
terminal head > —=
unit 0 L P
L]
L]
L]
Operating System Concepts — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©2009

‘v”%v’ Representation of Process Scheduling

—p >
»| ready queue CPU
I/lO queue [¢— [1/Orequest [
time slice
expired

child fork a
executes child

interrupt wait for an
occurs interrupt

A

Operating System Concepts — 8t Edition 3.13 Silberschatz, Galvin and Gagne ©2009

.

w o Schedulers

B Long-term scheduler (or job scheduler) - selects
which processes should be brought into the
ready queue

B Short-term scheduler (or CPU scheduler) -

selects which process should be executed next
and allocates CPU

& V‘»&i S
P~ f\.{
U }:' 0

Operating System Concepts — 8t Edition 3.14 Silberschatz, Galvin and Gagne ©2009

=

B
“$¥7 Addition of Medium Term Scheduling

e\

swapping

|

swap in partially executed swap out :
swapped-out processes :
|

|

|

I/O waiting
gueues

ra 2\
7

A

Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2009

=
o nﬂ-m.i

*w—f Schedulers (Cont)

B Short-term scheduler: invoked very frequently
(milliseconds) = (must be fast)

B Long-term scheduler: invoked very infrequently
(seconds, minutes) = (may be slow)

® The long-term scheduler controls the degree of
multiprogramming

B Processes can be described as either:

® I/O-bound process - spends more time doing I/O than
computations, many short CPU bursts

® CPU-bound process - spends more time doing
computations; few very long CPU bursts

AR
» - W
4 ’wv‘\'{

A

3\

Operating System Concepts — 8t Edition 3.16 Silberschatz, Galvin and Gagne ©2009

=

A.mj .
‘.T-‘-.‘AF X & r
P Context Switch

B When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch

B Context of a process represented in the PCB

B Context-switch time is overhead; the system does no
useful work while switching

B Time dependent on hardware support

g
y ‘,\,{
U 29X

Operating System Concepts — 8t Edition 3.17 Silberschatz, Galvin and Gagne ©2009

=

-

,‘mi
r & Process Creation

B Parent process create children processes, which, in turn
create other processes, forming a tree of processes

® Generally, process identified and managed via a process
identifier (pid)
B Resource sharing
® Parent and children share all resources
® Children share subset of parent’s resources

® Parent and child share no resources

B Execution
® Parent and children execute concurrently

® Parent waits until children terminate

o J
y‘ﬁ:f \4\:
y ‘\,\ﬁ

A 29X

Operating System Concepts — 8t Edition 3.18 Silberschatz, Galvin and Gagne ©2009

r.él Process Creation (Cont)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples

® fork() system call creates new process

® exec() system call used after a fork() to replace the process’
memory space with a new program

N \\l\ \\
P ‘EX k
——— ‘«\\‘1\)
WS
oGl .Q.'."

Operating System Concepts — 8t Edition 3.19 Silberschatz, Galvin and Gagne ©2009

Process Creation

child

Operating System Concepts — 8" Edition

parent

wait

resumes

exec() »

3.20

A X
Silberschatz, Galvin and Gagne ©2009

| = .
M};ﬁ, C Program Fork.mg Separate Process

int main ()
{
pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
exit (-1);

}

else if (pid == 0) { /* child process */
execlp ("/bin/1s", "1s", NULL);

}

else { /* parent process */

/* parent will wait for the child to
complete */

wait (NULL) ;
printf ("Child Complete");
exit (0);

A

3.21 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

e N

: T“‘ﬂ“ﬁk‘*‘
""%"" Process Creation in Win32 API (Fig. 3.12)

B CreateProcess()
® Similar to fork() in UNIX

B WaitForSingleObject()
® Similar to wait() in UNIX

B CloseHandle()
® Similar to exit() in UNIX

L/ S\

Operating System Concepts — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©2009

Sched
pid =0

inetd dtlogin
pid = 140 pid = 251

o
D
Q
©
o
=

Xsession
pid = 294

telnetdaemon
pid = 7776

Csh
pid = 7778

Netscape emacs
pid = 7785 pid = 8105

sdt_shel
pid = 340

Csh
pid = 1400

cat
pid = 2536

Operating System Concepts — 8t Edition 3.23 Silberschatz, Galvin and Gagne ©2009

>

3

=

A"”e"‘"-’hi .
(0 1 1 n
! Process Terminatio

B Process executes last statement and asks the OS to
delete it (exit)
® Output data from child to parent (via wait)

® Process’ resources are deallocated by OS

B Parent may terminate execution of children
processes (abort)

® Child has exceeded allocated resources
® Task assigned to child is no longer required

® If parent is exiting

» Some OS do not allow child to continue if its parent
terminates

All children terminated - cascading termination

£ S ‘l
y‘ﬁ:f \4\:
s w

AU 29X

Operating System Concepts — 8" Edition 3.24 Silberschatz, Galvin and Gagne ©2009

p—

(s 1cati
“»7" Interprocess Communication

B Processes within a system may be independent or
cooperating

® Cooperating process can affect or be affected by other
processes, including sharing data

® Cooperating processes need interprocess communication
(IPC)

B Two models of IPC

® Shared memory

® Message passing

AV
N \‘A\
> 7 e\
a «:S\ N
e ,p/‘»‘*\‘\\
> X
W(
5
“ PoL

Operating System Concepts — 8t Edition 3.25 Silberschatz, Galvin and Gagne ©2009

r o Communications Models

process A M process A —
PH }

shared ‘L‘
2

process B M process B d

2 1
kernel M kernel
(a) (b)

Operating System Concepts — 8t Edition 3.26 Silberschatz, Galvin and Gagne ©2009

=

iy

ot Cooperating Processes

B Independent process cannot affect or be affected by the
execution of another process

B Cooperating process can affect or be affected by the
execution of another process
B Advantages of process cooperation
® Information sharing
® Computation speed-up
® Modularity

® Convenience

i V‘»&i S
P~ f\.{
A }:' !

Operating System Concepts — 8t Edition 3.27 Silberschatz, Galvin and Gagne ©2009

4
#

p—

\

“$7” Producer-Consumer Problem

B Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process

® unbounded-buffer: no practical limit on buffer size
® bounded-buffer: a fixed buffer size

e ——

N \\l\ \\
P ‘EX k
7 \\\\,\]
WS
oGl .Q.'."

Operating System Concepts — 8t Edition 3.28 Silberschatz, Galvin and Gagne ©2009

*"’ Bounded-Buffer - Shared-Memory Solution

B Shared data
#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer|[BUFFER_SIZE];
intin=0;
int out = 0;

B Solution is correct, but can only use
BUFFER_SIZE-1 elements

N v\":\ \
7 o— g
B =N |
_w
A 3 3
“ A

Operating System Concepts — 8t Edition 3.29 Silberschatz, Galvin and Gagne ©2009

4md%
“$*Bounded-Buffer - Producer (Fig. 3.14)

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER SIZE) ==

out)

; // do nothing - no free buffers
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

\'\\Q‘H‘
A ?3:-‘.-:“

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.30

‘ ”‘:ﬂm}‘%
“$”Bounded Buffer - Consumer (Fig. 3.15)

while (true) {

while (in == out)
; // do nothing -- nothing to
consume

// remove an i1tem from the buffer

item = buffer|[out];

out = (out + 1) % BUFFER SIZE;

return item;

A A

Operating System Concepts — 8t Edition 3.31 Silberschatz, Galvin and Gagne ©2009

- Interprocess Communication - Message Passing

B Mechanism for processes to communicate and to
synchronize their actions

B Message system - processes communicate with each
other without resorting to shared variables

B [PC facility provides two operations:
® send(message) - message size fixed or variable
® receive(message)

B If P and Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive

B Implementation of communication link

® physical (e.g., shared memory, hardware bus)

= : '.\ ‘ \I
¢ /‘%; R
154 ’wv‘\'{

® logical (e.g., logical properties) —d

v

A

Operating System Concepts — 8™ Edition 3.32 Silberschatz, Galvin and Gagne ©2009

=

—
(rf / o o
2 Implementation Questions

B How are links established?
B Can a link be associated with more than two processes?

B How many links can there be between every pair of
communicating processes?

B What is the capacity of a link?

B [s the size of a message that the link can accommodate
fixed or variable?

B Is a link unidirectional or bi-directional?

QY
.
4 ",\,{

A 29X

Operating System Concepts — 8t Edition 3.33 Silberschatz, Galvin and Gagne ©2009

=

iy

w../ Direct Communication

B Processes must name each other explicitly:
® send(P, message) - send a message to process P

® receive(Q, message) - receive a message from process Q

B Properties of communication link

® Links are established automatically

® A link is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link

® The link may be unidirectional, but is usually bi-directional

e ——

7 ’f‘},\,-:
A 29X

Operating System Concepts — 8t Edition 3.34 Silberschatz, Galvin and Gagne ©2009

=

,«.m-k .
) ‘3""' Indirect Communication

B Messages are directed and received from mailboxes
(also referred to as ports)

® Each mailbox has a unique id

® Processes can communicate only if they share a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes

® Each pair of processes may share several communication
links

® Link may be unidirectional or bi-directional

QY
4 ",\,{
A 29X

Operating System Concepts — 8t Edition 3.35 Silberschatz, Galvin and Gagne ©2009

4
#

p—

- Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox

® destroy a mailbox
B Primitives are defined as:
send(A, message) - send a message to mailbox A

receive(A, message) - receive a message from
mailbox A

e ——

\¥
Sy
> ¥\
- " N
4" \\\\
%
oGl ~4¥‘."‘

Operating System Concepts — 8t Edition 3.36 Silberschatz, Galvin and Gagne ©2009

r.d Indirect Communication

B Mailbox sharing
® P,, P, and P, share mailbox A
® P,, sends; P, and P; receive

® Who gets the message?

B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation

® Allow the system to select arbitrarily the receiver

» Sender is notified who the receiver was

e ——

\¥
RN AN\
> ¥ e\
- " N
4" \\\\
%
oGl ~4¥‘."‘

Operating System Concepts — 8t Edition 3.37 Silberschatz, Galvin and Gagne ©2009

),
r,*r“

/Ffm%l' ° °
! Synchronization

B Message passing may be either blocking or non-

blocking

B Blocking is considered synchronous

® Blocking send has the sender block until the message is
received

® Blocking receive has the receiver block until a message is
available

B Non-blocking is considered asynchronous

® Non-blocking send has the sender send the message and
continue

® Non-blocking receive has the receiver receive a valid
message or null

)
- " U
< 4 ’wv‘\'{

A

3\

Operating System Concepts — 8™ Edition 3.38 Silberschatz, Galvin and Gagne ©2009

=

N
r ﬁml

B Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity - 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity - finite length of n messages
Sender must wait if link full

3. Unbounded capacity - infinite length
Sender never waits

e ——

P e
<
U ‘i"

Operating System Concepts — 8t Edition 3.39 Silberschatz, Galvin and Gagne ©2009

=

-

x.;;‘i | Examples of IPC Systems - POSIX
— ‘f i go 3.16’

B POSIX Shared Memory

® Process first creates shared memory segment

seg id = shmget (IPC PRIVATE, size, S IRUSR |
S IWUSR) ;

® Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat (seg id, NULL, O0);
® Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared
memory") ;

® When done a process can detach the shared memory from its
address space

shmdt (shared memory) ;

e ——

- \ ¥
-; /‘»i; M
, 25 N
7 1S
£ DA

Operating System Concepts — 8t Edition 3.40 Silberschatz, Galvin and Gagne ©2009

4

-

A”¢mj
“$7” Examples of IPC Systems - Mach

B Mach: communication is message based
® Even system calls are messages
® Each task gets two mailboxes at creation - Kernel and Notify
® Only three system calls needed for message transfer
msg send (), msg receive (), msg rpc()
® Mailboxes needed for communication, created via

port allocate ()

e ——

‘\)
3 N ,\V”\‘\‘
& o
>Y "«\\\\‘
WS
“ PUU

Operating System Concepts — 8t Edition 3.41 Silberschatz, Galvin and Gagne ©2009

=

<@
‘”*"" Examples of IPC Systems - Windows XP

B Message-passing centric via local procedure call (LPC)
facility
® Only works between processes on the same system

® Uses ports (like mailboxes) to establish and maintain
communication channels

® Communication works as follows:
» The client opens a handle to the subsystem’s connection port object
» The client sends a connection request

» The server creates two private communication ports and returns the
handle to one of them to the client

» The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

QY
4 ",\,{
A 29X

Operating System Concepts — 8™ Edition 3.42 Silberschatz, Galvin and Gagne ©2009

/"ﬂm} ° °
“$7/ Local Procedure Calls in Windows XP

Client

Operating System Concepts — 8" Edition

Server

Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle
Communication Port

>

Shared
Section Object
(< = 256 bytes)

&

3.43

Silberschatz, Galvin and Gagne ©2009

=

*""""J
Mﬁ)” Communications in Client-Server Systems
B Sockets

B Remote Procedure Calls

B Pipes

Operating System Concepts — 8t Edition 3.44 Silberschatz, Galvin and Gagne ©2009

e
0 Sockets

B A socket: an endpoint for communication

® Concatenation of IP address and port
® The socket 161.25.19.8:1625: port 1625 on host 161.25.19.8

B Communication consists of a pair of sockets

N \\l\ \\
P ‘EX k
PR 7 \\\\,\ !
WS
oGl .Q.'."

Operating System Concepts — 8t Edition 3.45 Silberschatz, Galvin and Gagne ©2009

: ,.ﬁ'f""""‘" . .
r o Socket Communication
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

PR
A%

A

Operating System Concepts — 8t Edition 3.46 Silberschatz, Galvin and Gagne ©2009

-

g
P BSD Socket

L

B BSD Socket
® socket()
® close()
B Server
® bind|()
® listen()
® accept()
B Client
® connect()
B Data transfer
® send()/read()
® recv()/write()

> (4=
e N
o

A

Operating System Concepts — 8t Edition 3.47 Silberschatz, Galvin and Gagne ©2009

&0
*»"’ Example Java Socket Programs

B An example Date server (Fig. 3.19)
® ServerSocket

® Socket
» accept()
» getOutputStreamy()

» close()

B An example Date client (Fig. 3.20)

® Socket
» getInputStream()

Operating System Concepts — 8t Edition 3.48 Silberschatz, Galvin and Gagne ©2009

_
) Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

B Stubs - client-side proxy for the actual procedure on the
server

B The client-side stub locates the server and marshalls the
parameters

B The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on
the server

£

AN

Operating System Concepts — 8" Edition 3.49 Silberschatz, Galvin and Gagne ©2009

e Execution of RPC

L

client messages server
user calls kernel
to send RPC
message to
procedure X
kernel sends from;clent matchmaker
message to receives
matchmaker to message, looks
find port number up answer
A
From: server
kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message = ReRPCX~ with port P
N
(\ -
From: client daemon
kernel sends - Forserver — listening to
RPC Port: port P ,\ port P receives
~Contents= message
daemon
kernel receives N processes
reply, passes — request and
it to user Port: kernel processes send
<output> output

Operating System Concepts — 8t Edition 3.50 Silberschatz, Galvin and Gagne ©2009

=

N
r ﬁml

B Acts as a conduit allowing two processes to
communicate

B [ssues
® [s communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-duplex?

® Must there exist a relationship (i.e. parent-child) between the
communicating processes?

® Can the pipes be used over a network?

P _ ‘;",;‘\5
=

A48

e ——

Operating System Concepts — 8t Edition 3.51 Silberschatz, Galvin and Gagne ©2009

_n

(.

. Ordinary Pipes

B Ordinary Pipes allow communication in standard
producer-consumer style

B Producer writes to one end (the write-end of the pipe)

B Consumer reads from the other end (the read-end of the

pipe)
B Ordinary pipes are therefore unidirectional

B Require parent-child relationship between
communicating processes

1\

), BN A
X b
“ AP%

Operating System Concepts — 8t Edition 3.52 Silberschatz, Galvin and Gagne ©2009

Ordinary Pipes

parent
fd(0) fd(1)

child
fd(0) fd(1)

pipe

Operating System Concepts — 8" Edition

3.53

S
B

n

Silberschatz, Galvin and Gagne ©2009

3{*\

V I 7 Ordinary Pipes in UNIX

B (Fig. 3.23 & Fig. 3.24)

B Functions

® pipe()
® read()
0

® close()

® write

Operating System Concepts — 8t Edition 3.54 Silberschatz, Galvin and Gagne ©2009

=

| - v:ﬂ"".'j
-

Anonymous Pipes in Windows

m (Fig. 3.25-3.27)

B Functions
® CreatePipe()
® WriteFile()
® ReadFile()
® CloseHandle()

Operating System Concepts — 8" Edition 3.55

ra 2\
7

A

Silberschatz, Galvin and Gagne ©2009

=

o)
(rf } °
20 Named Pipes

B Named Pipes are more powerful than ordinary pipes
B Communication is bidirectional

B No parent-child relationship is necessary between the
communicating processes

B Several processes can use the named pipe for
communication

B Provided on both UNIX and Windows systems

QY
4 ",\,{
A 29X

Operating System Concepts — 8t Edition 3.56 Silberschatz, Galvin and Gagne ©2009

/"“m'l
"%"’ Named Pipes in UNIX and Windows

B FIFO in UNIX
® mkfifo()
® open()
® read()
® write()
® close()

B Named pipes in Windows
® CreateNamedPipe()
® ConnectNamedPipe()
® ReadFile()
® WriteFile()

A R
Operating System Concepts — 8t Edition 3.57 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

Operating System Concepts — 8t Edition, Silberschatz, Galvin and Gagne ©2009

