) Operatlng

Systems:
Internals \ Chapter 1
Fositri’ Computer Syst_em
Overview

Prmuples

Seventh Edition

1
|
1
\
|
|
|
|
and .
W
|
|
|
l
By William Stallings

l

Operatlng Systems:
Internals and Design Principles

“No artifact designed by man is so convenient for this kind of functional
description as a digital computer. Almost the only ones of its properties
that are detectable in its behavior are the organizational properties.
Almost no interesting statement that one can make about on operating
computer bears any particular relation to the specific nature of the
hardware. A computer is an organization of elementary functional
components in which, to a high approximation, only the function
performed by those components is relevant to the behavior of the whole
system.”

THE SCIENCES OF THE ARTIFICIAL ,

Herbert Simon

‘Operating System.

m Exploits the hardware resources of one or
more processors (cores)

m Provides a set of services (system calls) to
system users

m Manages main/secondary memory and 1/O

devices = =) f
|:> 4
=l Y&
=\

+ Basic Elements

/O
Processor Miodules
Main
Memory

~ Processor

Controls the Performs the
operation of the data processing
computer functions

Referred to as
the Central
Processing Unit
(CPU)

Main Memory

m\/olatile

mContents of the memory Is
lost when the computer IS
shut down

mReferred to as real memory
or primary memory

~ o MﬁodUl&S

Moves data
between the

computer and
external

environments
such as:

Storage
(e.g. hard drive)

communications
equipment (NIC)

terminals

System Bus

mProvides for
communication among
processors, main memory,
and /O modules

CPU

PC MAR
IR MBR
I/0 AR
Exebéiun
\ unit f I/O BR

I/0 Module

Buffers

Figure 1.1 Computer Components:

System
Bus

Main Memory

Instruction

e 0 8 2=

Instruction

Instruction

Data
Data
Data
Data

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

Top-Level View

mInvention that brought about desktop
and handheld computing

mProcessor on a single chip
mFastest general purpose processor
m Multiprocessors

mEach chip contains multiple processors
(cores)

Graphical Processing
Units (GPU’s)

mProvide efficient computation on arrays
of data using Single-Instruction Multiple
Data (SIMD) technigues

mUsed for general numerical processing
mPhysics simulations for games
m Computations on large spreadsheets

¥ P

Digital Signal Processors
- (DSPs)

mDeal with streaming signals such as
audio or video

mUsed to be embedded in devices like
modems

mEncoding/decoding speech and video
(codecs)

mSupport for encryption and security

v D S P

System on a Chlp
- (SoC)

m [o satisfy the requirements of handheld
devices, the microprocessor Is giving
way to the SoC

mComponents such as DSPs, GPUSs,
codecs and main memory, in

addition to the CPUs and
caches, are on the same chip

Instruction Execution

m A program consists of a set of
Instructions stored in memory

* processor reads (fetches)
Instructions from memory

* processor executes each
INstruction

Basic Instruction Cycle

Fetch Stage Execute Stage

Fetch Next
Instruction

Figure 1.2 Basic Instruction Cycle

Instruction Fetch
"and Execute

m The processor fetches the instruction from
memory

m Program counter (PC) holds address of the
Instruction to be fetched next

InStruction‘ Register (IR)

Fetched instruction is
loaded Into Instruction
Register (IR)

m Processor interprets the
Instruction and
performs required
action:

O Processor-memory

m Processor-1/0

m Data processing

m Control

Characteristics of a
Hypothetical Machine

0 34 15
Opcode | Address
(a) Instruction format
0 1 15
| S | Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(¢) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory

0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

E I f Fetch Stage Execute Stage
Xal I lp e O Memory CPU Registers Memory CPU Registers
30011 9 4 0 3 0 0|PC 30001 9 40 3 0 1|PC
30159411 ACJ301|5 9 41 000 3]AC
PrO ram 30229 41 19 4 0|IR|302[29 41 19 4 0|IR
g load 940 940[0 0 0 3 940[0 0 0 3
94110 0 0 2 941f0 0 0 2
I t. Step 1 Step 2
Xe C u I O n Memory CPU Registers Memory CPU Registers
30011 9 4 0 3 0 1|PC 30011 & 40 30 2]PC
301159 41 000 3|AC]301|5 9 41 000 5]AC
3032941“5941[11 3022941&5941
add 941 940[0 0.0 3 4000 03] *3+2=5
94110 0 0 2 941{0 0 0 2
Step 3 Step 4
Memory CPU Registers Memory CPU Registers
300(1 940 3 0 2|PC 001 940 3 0 3|PC
30115 941 000 S5|AC]301|5 9 41 000 5]AC
30212 9 4 1 2 9 4 1|IR|302]12 9 4 1 29 4 1|IR
store 941 ; ;
940|10 0 0 3 940(0 0 0 3
941/0 0 0 2 94110 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Memory Hierarchy

m Major constraints in memory
& amount N\
¢ speed
¢~ Expense (cost)

m Memory must be able to keep up with the
processor

m Cost of memory must be reasonable in relationship
to the other components

Memory Relationships

Faster
access time
= greater
cost per bit

Greater capacity =
smaller cost per

bit

Greater
capacity =
slower access
Speed

The Memory Hierarchy

= Going down the
hierarchy:

» decreasing cost per bit
» Increasing capacity
» INncreasing access time

» decreasing frequency of
access to the memory by
the processor

Figure 1.14 The Memory Hierarchy

Performance of a Simple
Two-Level Memory

Average access time

0 1
Fraction of accesses involving only Level 1 (Hit ratio)

Figure 1.15 Performance of a Simple Two-Level Memory

Principle of Locality

m Memory references by the processor tend to
cluster

m Data Is organized so that the percentage of
accesses to each successively lower level Is
substantially less than that of the level above

m Can be applied across more than two levels
of memory

- Types of Locality -

m Spatial locality: tendency of execution to
Involve a number of memory locations that
are clustered

m Temporal locality: tendency for a processor
to access memory locations that have been
used recently

Clicker: Locality

Processor access Instructions/data
sequentially...

A. Spatial locality: tendency of execution to
Involve a number of memory locations that

are clustered

B. Temporal locality: tendency for a processor
to access memory locations that have been

used recently

Clicker: Locality

When an iteration (£ox) loop Is executed...

A. Spatial locality: tendency of execution to
Involve a number of memory locations that

are clustered

B. Temporal locality: tendency for a processor
to access memory locations that have been

used recently

How to Exploit Locality?

m Spatial locality: use larger cache and pre-
fetching

m Temporal locality: keep recently used
Instruction/data in cache and exploit cache
hierarchy

Secondary

Also referred

@ to as auxiliary
\/\ P memory
\/\)\/ C/ + External
« Nonvolatile
\S{@g\ Used to store

v program and data
files

Cache Memory .

m |nvisible to the OS
m |nteracts with other memory management hardware

m Processor must access memory at least once per
Instruction cycle

m Processor execution is limited by memory cycle time

m EXxploit the principle of locality with a small, fast memory

Cache Principles

m Contains a copy of a portion of main memory
m Processor first checks cache
m |f not found, a block of memory is read into cache

m Because of locality of reference, it is likely that many of the
future memory references will be to other bytes in the block

Cache
and
Main
Memory

Block Transfer

Word Transfer !'\L"‘\
CPU Cache Main Memory
Fast Slow
(a) Single cache
CPU Level 1 level2 |+ Level3 |—»{ Main
(L1) cache (L2) cache [{g—1 (L3) cache |lg—1 Memory
Fastest Fast
Less Slow
fast

(b) Three-level cache organization

Cache/Main-Memory Structure

Linge Memory
Number Tag Block address
pi T T T | o!'" T 1
1 :____i ___________________ : ll ________ 1
L e e e e e e e — T -
2 [____: ___________________ | 2, I Elock
| ! | 3| y (K words)
| [- : D |
- : | | |
L . | I 1
I
o R | | i
_____ BlockLength ' |
+ (K Words) * : !
I * :
(a) Cache | . .
a) Cac ! . |
I I
I I
| I
| I
[i
[
| I
| I
| I
I | »=Block
i :
i I |
2 —l:_________.
Word
Length

{(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

Cache Read
Operation

START

Receive address
BA from CPU

<

Is block
containing BA
in cache?

lYes

BA - read address

No

Access main
memory for block
containing RA

Fetch RA word
and deliver
to CPU

Allocate cache
slot for main
memory block

Load main
memory block
into cache slot

Deliver BA word
to CPU

DONE W

Figure 1.18 Cache Read Operation

Mol

Cache

Design

number of
cache
levels

\Eg
categories
are:

mapping
function

replacemen

t algorithm

Cache and Block Size

-

_

Small caches
have significant
Impact on
performance

~

Block

Size

4 N
The unit of data
exchanged

between cache

'

and main memory
b _

Mapping Function

* Determines which cache

location the block will occupy _

When one block is read

In, another may have to
be replaced

Two constraints affect

design:

The more flexible the
mapping function, the
more complex is the
circuitry required to
search the cache

Interrupts

nterrupt the normal sequencing of the
orocessor

Provided to Improve processor utilization
m most I/O devices are slower than the processor

m processor must pause to wait for device
m wasteful use of the processor

Classes
of Interrupts

Table 1.1 Classes of Interrupts

Program (Generated bv some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference cutside a user's allowed
Mmemory space.

Tmmer (Generated by a timer within the processor. This allows the operating svstem
to perform certain functions on a regular basis.

O Generated by an [/O controller, to signal normal completion of an operation
or to signal a varietv of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

User o
Program , Program
—==", =

@

@ i i
N’ : "

Flow of Control Tig==
Without Wy =

e
."\-\.5'.-"'

Interrupts f 7

(a) No interrupts

Interrupts:
Short I/O Walt

User

'O

Program Program
— : : , : —
D A1 1 |®
N F ot T
AL, ¥ Command
WRITE .-
(2a) | ::'
S,
e : .'*,'-" ", Intermupt
= P27 *-... Handler
L . -
I X! : AT
WRITE b, \2)
; ~ END
o i
"33/ :
X

P
kL

.
WRITE

(b) Intermupts;

short I/ wait

Transfer of Control via Interrupts

User Program Interrupt Handler

-

]]
]]
-]
1
Interrupt —_
occurs here i+1 -+
]
]
]
M
Figure 1.6 Transfer of Control via Interrupts

a{%

Instruction Cycle With Interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

Check for
interrupt;
initiate imterrapt
handler

Fetch next
instruction

Execute
instruction

terrupts
Enabled

HALT '

Figure 1.7 Instruction Cycle with Interrupts

Program Timing:
No Interrupt T e

User 18]

®\©

PIDE;[EIJH . PIU'FIEJTI- Processor o
T é -"'= -1 operation
® S @
"

ArErmsdEs R R
"

TO
Command
. EI";E Processor I o]

operation

o
L

fa

® ® ol

-
=
A

-l.-lf-l-i-l FEFEREEFEREEEREE

=
a .
.
L]
£
"
-

*a
=

ey
L
.

)
=
"

-
Faag,
a
"

@ |ol

5

1--1.- e T T T T T T

(a) Without interrupts
(eircled numbers refer
to mimbers in Figure 1 5a)

Figure 1.8 Program Ti

%

{a) No mtemmpts

Program Timing:
Short I/0 Walit

User 'O 1o

PIEE“ ' : o prigﬂm Icperaticn

@ i A

N I Ry o | TO

WRITE e L Command

T i { I o
operation

(b) With interrupts
(circled numbers refer
to numbers in Figure 1.5b)

ogram Timing: Short /O Wait

I
WRITE

(b) Interrupts; short I'O wait

Program Timing:

Long I/O walit

Time

o| @ jofifele

Processor

o ot

|
|

(a) Without intermupts

{circled numbers refer

Lo
operation

o
operation

to numbers in Figure 1.5a)

© Jole

Processor

4
&

© ®©

Processor

©

(b) With interrupts
(circled numbers refer
to numbers in Figure 1 .5c)

o
operation

o
operation

Figure 1.9 Program Timing: Long /'O Wait

Hardware Software

S I I I l | e Device controller or
other system hardware

issues an interrupt

A 4
Save remainder of
process state

I n te r r u t — information
Processor finishes

execution of current
instruction

Processing "

Processor signals
acknowledgment
of interrupt

h 4

Restore process state
information

h 4

Processor pushes PSW
and PC onto control
stack

Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple Interrupt Processing

T — A
Clontrol 9 I
T
a1
Progrann
Counter
¥ [Start E
Interrpt General
Carvics Registers
¥ + L [Femum| Foutine [T Je=
Stack
Pointer
Processor
T — AL
M .
N+l LTser's
Program
Main
Memory

(a) Interrupt occurs after instruction
at location NV

T — AA
oo 1
—ontrol B
Staclks
T
¥ s L+ 1
Program
Counter
¥ Start t
InterTupt Ceneral
Service Registers
- Fouotine
"+ L | Fatum T — T
Stack
Poimter
Processor
Ford .
N Uzer's
Programn
MNain
Memory

(b)) Return from infterrupit

‘Multiple Interrupts

An interrupt occurs

while another interrupt Two approaches:
IS being processed

 e.g. receiving data « disable interrupts while
from a an interrupt is being
communications line processed (sequential)
and printing results at e USe a priority scheme

the same time (nested)

Transfer of Control With
Multiple Interrupts:

]
o
=
=
=
=
M.—-

E

-
2
=
-

dIIIIIIIIIIII\I = :

i | ¥

é Sequential

= s
2 =
e 3
l'ﬁ'-’
E
oLt

(a) Sequential interrupt processing

Transfer of Control With
Multiple Interrupts:

\ Nested

-
i
g E
=
b

:
|

User Progra

/

x

=
-t

PLLErreereneneenneenrg e | ®

o

(b) Nested interrupt processing

Example Time Sequence
of Multiple Interrupts

[= 25 interrupt service routine

) Printer Communication
User program . : . . : _
= interrupt service routine interrupt service routine
— = / _ A
W\ — —
ff\ —_ —
1 — —
F s : Disk

/

frrrrrrerrrrerrrrerrerrrrrnrini
5
I Y I I O

{

Figure .13 Example Time Sequence of Multiple Interrupts

. (SMP)

m A stand-alone computer system with
the following characteristics:

m two or more similar processors of comparable capability

m processors share the same main memory and are
Interconnected by a bus or other internal connection
scheme

m processors share access to 1/O devices
m all processors can perform the same functions

m the system is controlled by an integrated operating
system that provides interaction between processors and
their programs at the job, task, file, and data element

lav/ale

SMP Organization

Processor Processor e o o Processor

L1 Cache L1 Cache L1 Cache

L2 Cache L2 Cache L2 Cache

System Bus

Main /o
Memory 1/O Adapter

Subsystem

I/0
Adapter

/0
Adapter

Figure 1.19 Symmetric Multiprocessor Organization

‘Multicore Computer

m Also known as a chip multiprocessor

m Combines two or more processors (cores)
on a single piece of silicon (die)
m each core consists of all of the components of
an independent processor

m In addition, multicore chips also include L2
cache and in some cases L3 cache

Core(

Core 1 Core 2 Core3

32kBI&D 32 kB I&D

32kBI&D 32 kB I&D
L1 Caches L1 Caches

L1 Caches L1 Caches

256 kB 256 kB 256 kB
L2 Cache L2 Cache

256 kB
L2 Cache L2 Cache

8 MB
L3 Cache
DDR3 Memory QuickPath
Controllers Interconnect
, S S s s
vy v v vi v

X 8B @ 1.33 GI/s 4x 20b @ 6.4 GT/s

Figure 1.20 Intel Corei7 Block Diagram

Summary

m Basic Elements

m processor, main memory, I/O modules,
system bus

m GPUs, SIMD, DSPs, SoC

m Instruction execution

m processor-memory, processor-1/0, data
processing, control

m Interrupt/Interrupt Processing

m Memory Hierarchy

m Cache/cache principles and designs
m Multiprocessor/multicore

