
Chapter 2

Operating System 

Overview
Seventh Edition

By William Stallings

Operating 

Systems:

Internals 

and 

Design 

Principles



Operating Systems:

Internals and Design Principles

Operating systems are those programs that interface the machine

with the applications programs. The main function of these systems 

is to dynamically allocate the shared system resources to the 

executing programs. As such, research in this area is clearly 

concerned with the management and scheduling of memory, 

processes, and other devices. But the interface with adjacent levels 

continues to shift with time. Functions that were originally part of the 

operating system have migrated to the hardware. On the other side, 

programmed functions extraneous to the problems being solved by the 

application programs are included in the operating system.

—WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND

ENGINEERING RESEARCH STUDY, 

MIT Press, 1980



Operating System

 A program that controls the execution of 

application programs

 An interface between applications and 

hardware
Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve





 Program development: IDE

 Program execution: process creation

 Access I/O devices

 Controlled access to files

 System access

 Error detection and response

 Accounting



Key Interfaces

 Instruction set architecture (ISA)

Application binary interface (ABI)

Application programming interface (API)



A computer is a set of (shared) 

resources for the movement, storage, 

and processing of data

The OS is responsible for managing

these resources



Functions in the same way as ordinary 

computer software

Program, or suite of programs, executed 

by the processor

Frequently relinquishes control and must 

depend on the processor to allow it to 

regain control



Operating

System

as

Resource 

Manager



Evolution of Operating 
Systems

A major OS will evolve over time for a 

number of reasons:

Hardware upgrades

New types of hardware

New services

Fixes



Evolution of 

Operating Systems

 Stages include:

Serial 
Processin
g

Simple 
Batch 
Systems

Multiprogrammed 
Batch Systems

Time 
Sharing 
Systems



Serial Processing

Earliest Computers:

 No operating system

 programmers interacted 
directly with the computer 
hardware

 Computers ran from a console 
with display lights, toggle 
switches, some form of input 
device, and a printer

 Users have access to the 
computer in “series”

Problems:

 Scheduling:

 most installations used a 

hardcopy sign-up sheet to 

reserve computer time

 time allocations could 

run short or long, 

resulting in wasted 

computer time

 Setup time

 a considerable amount of 

time was spent just on 

setting up the program to 

run



Simple Batch Systems

 Early computers were very expensive

 important to maximize processor utilization

 Monitor

 user no longer has direct access to processor

 job is submitted to computer operator who batches 

them together and places them on an input device

 program branches back to the monitor when finished



 Monitor controls the sequence 

of events

 Resident Monitor is software 

always in memory

 Monitor reads in job and gives 

control

 Job returns control to monitor



 Processor executes instruction from the memory 

containing the monitor

 Executes the instructions in the user program until it 

encounters an ending or error condition

 “control is passed to a job” means processor is 

fetching and executing instructions in a user program

 “control is returned to the monitor” means that the 

processor is fetching and executing instructions from 

the monitor program



Job Control Language 
(JCL)

Special type of programming 
language used to provide 
instructions to the monitor

what compiler to use

what data to use

$JOB

$FTN

…

[FORTRAN program]

…

$LOAD

$RUN

…

[data]

…

$END



• while the user program is executing, it must not alter the memory area 
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts



Modes of Operation

User Mode

• user program executes in 
user mode 

• certain areas of memory 
are protected from user 
access

• certain instructions may not 
be executed

Kernel Mode

• monitor executes in kernel 
mode

• privileged instructions may 
be executed

• protected areas of memory 
may be accessed



Simple Batch System 
Overhead

 Processor time alternates between execution of user 

programs and execution of the monitor

 Sacrifices:

 some main memory is now given over to the monitor

 some processor time is consumed by the monitor

 Despite overhead, the simple batch system improves 

utilization of the computer



Multiprogrammed 
Batch Systems

 Processor is 

often idle 

 even with 

automatic 

job 

sequencing

 I/O devices 

are slow 

compared to 

processor



 The processor spends a certain amount of 

time executing, until it reaches an I/O 

instruction; it must then wait until that I/O 

instruction concludes before proceeding



 There must be enough memory to hold the OS (resident 

monitor) and one user program

 When one job needs to wait for I/O, the processor can switch 

to the other job, which is likely not waiting for I/O



 Multiprogramming

 also known as multitasking

 memory is expanded to hold three, four, or more 
programs and switch among all of them



Multiprogramming 
Example



Effects on Resource 
Utilization

Table 2.2   Effects of Multiprogramming on Resource Utilization 



Utilization Histograms



 Can be used to handle multiple interactive 

jobs

 Processor time is shared among multiple 

users

 Multiple users simultaneously access the 

system through terminals, with the OS 

interleaving the execution of each user 

program in a short burst or quantum of 

computation



Table 2.3   Batch Multiprogramming versus Time Sharing 



Compatible Time-
Sharing Systems

CTSS

 One of the first time-sharing 
operating systems

 Developed at MIT by a group 
known as Project MAC

 Ran on a computer with 32,000     
36-bit words of main memory, 
with the resident monitor 
consuming 5000 of that

 To simplify both the monitor and 
memory management a program 
was always loaded to start at the 
location of the 5000th word

Time Slicing

 System clock generates interrupts 
at a rate of approximately one 
every 0.2 seconds

 At each interrupt OS regained 
control and could assign processor 
to another user

 At regular time intervals the current 
user would be preempted and 
another user loaded in

 Old user programs and data were 
written out to disk

 Old user program code and data 
were restored in main memory 
when that program was next given 
a turn





 Operating Systems are among the most 

complex pieces of software ever developed

Major advances in 
development include:

• Processes

• Memory management

• Information protection and 
security

• Scheduling and resource 
management

• System structure



 Fundamental to the structure of operating 

systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of execution, 
a current state, and an associated set of system resources



Development of the 
Process

 Three major lines of computer system development 

created problems in timing and synchronization that 

contributed to the development:

• processor is switched among the various programs residing in main 
memory

multiprogramming batch operation

• be responsive to the individual user but be able to support many 
users simultaneously

time sharing

• a number of users are entering queries or updates against a 
database

real-time transaction systems



Causes of Errors

 Nondeterminate 
program operation
 program execution is 

interleaved by the processor 
when memory is shared

 the order in which programs 
are scheduled may affect 
their outcome

 Deadlocks

 it is possible for two or 

more programs to be hung 

up waiting for each other

 may depend on the chance 

timing of resource 

allocation and release

 Improper 
synchronization
 a program must wait until 

the data are available in a 
buffer

 improper design of the 
signaling mechanism can 
result in loss or duplication

 Failed mutual 
exclusion
 more than one user or 

program attempts to make 
use of a shared resource at 
the same time

 only one routine at at time 
allowed to perform an 
update against the file



 The execution context is   
essential:

 it is the internal data by 
which the OS is able to 
supervise and control the 
process

 includes the contents of the 
various process registers

 includes information such as 
the priority of the process 
and whether the process is 
waiting for the completion of 
a particular I/O event

 A process contains 

three components:

 an executable program

 the associated data 

needed by the program 

(variables, work space, 

buffers, etc.)

 the execution context 

(or “process state”) of 

the program



Process 

Management

 The entire state of the 

process at any instant is 

contained in its context

 New features can be 

designed and 

incorporated into the OS 

by expanding the context 

to include any new 

information needed to 

support the feature



 The OS has five principal storage 

management responsibilities:

process 
isolation

automatic 
allocation 

and 
management

support of 
modular 

programming

protection 
and access 

control

long-term 
storage



 A facility that allows programs to address 

memory from a logical point of view, without 

regard to the amount of main memory 

physically available

 Conceived to meet the requirement of having 

multiple user jobs reside in main memory 

concurrently



 Allows processes to be comprised of a number of 

fixed-size blocks, called pages

 Program references a word by means of a virtual 

address

 consists of a page number and an offset within the 

page

 each page may be located anywhere in main memory

 Provides for a dynamic mapping between the virtual 

address used in the program and a real (or physical) 

address in main memory



Virtual 
Memory



Virtual Memory
Addressing



 The nature of the 

threat that concerns 

an organization will 

vary greatly 

depending on the 

circumstances

 The problem 

involves controlling 

access to computer 

systems and the 

information stored in 

them

Main 
issues availability

confidentiality

data 
integrity

authenticity



Scheduling and
Resource Management

 Key responsibility of an OS is managing 

resources

 Resource allocation policies must consider:

fairness

differential 
responsivene

ss

efficiency



Key Elements of an
Operating System



Different Architectural 
Approaches

Demands on operating systems require 

new ways of organizing the OS

• Microkernel architecture

• Multithreading

• Symmetric multiprocessing

• Distributed operating systems

• Object-oriented design

Different approaches and design elements have been 
tried:



Microkernel 
Architecture

 Assigns only a few essential functions to 
the kernel:

 The approach:

address 
spaces

interprocess 
communication 

(IPC)

basic 
scheduling

simplifies 
implementation

provides 
flexibility

is well suited to 
a distributed 
environment



 Technique in which a process, executing an application, is 
divided into threads that can run concurrently

Thread

• dispatchable unit of work

• includes a processor context and its own data area to enable subroutine 
branching

• executes sequentially and is interruptible

Process 

• a collection of one or more threads and associated system resources

• programmer has greater control over the modularity of the application and 
the timing of application related events



Symmetric 
Multiprocessing (SMP)

 Term that refers to a computer hardware architecture and 

also to the OS behavior that exploits that architecture

 Several processes can run in parallel

 Multiple processors are transparent to the user

 these processors share same main memory and I/O 

facilities

 all processors can perform the same functions

 The OS takes care of scheduling of threads or processes 

on individual processors and of synchronization among 

processors



SMP Advantages

Performance
more than one process can be 

running simultaneously, each on a 
different processor

Availability
failure of a single process does 

not halt the system

Incremental 
Growth

performance of a system can 
be enhanced by adding an 

additional processor

Scaling
vendors can offer a range of 

products based on the number of 
processors configured in the system 





Distributed Operating 
System

 Provides the illusion of

 a single main memory 
space 

 single secondary memory 
space

 unified access facilities

 State of the art for distributed 
operating systems lags that of 
uniprocessor and SMP 
operating systems

Object-Oriented  
Design

 Used for adding modular 

extensions to a small kernel

 Enables programmers to 

customize an operating system 

without disrupting system 

integrity

 Eases the development of 

distributed tools and full-blown 

distributed operating systems



 Virtualization

 enables a single PC or server to simultaneously run 

multiple operating systems or multiple sessions of a 

single OS

 a machine can host numerous applications, including 

those that run on different operating systems, on a single 

platform

 host operating system can support a number                        

of virtual machines (VM)

 each has the characteristics of a particular                      

OS and, in some versions of virtualization,                     

the characteristics of a particular hardware                 

platform



Virtual 

Memory 

Concept



• the machine on which it executes consists of the virtual memory space 
assigned to the process

• the processor registers it may use

• the user-level machine instructions it may execute

• OS system calls it may invoke for I/O

• ABI defines the machine as seen by a process

Process perspective:

• machine characteristics are specified by high-level language capabilities and 
OS system library calls

• API defines the machine for an application

Application perspective:

• processes share a file system and other I/O resources

• system allocates real memory and I/O resources to the processes

• ISA provides the interface between the system and machine

OS perspective:



Process and System Virtual Machines



Process and System Virtual Machines



Symmetric 
Multiprocessor OS 

Considerations
 A multiprocessor OS must provide all the functionality of a 

multiprogramming system plus additional features to accommodate multiple 

processors

 Key design issues:

Simultaneous 
concurrent 

processes or 
threads

kernel 
routines need 

to be 
reentrant to 

allow several 
processors to 
execute the 
same kernel 

code 
simultaneousl

y

Schedulin
g

any 
processor 

may perform 
scheduling, 

which 
complicates 
the task of 
enforcing a 
scheduling 

policy

Synchronizatio
n

with multiple 
active 

processes 
having potential 

access to 
shared address 

spaces or 
shared I/O 

resources, care 
must be taken 

to provide 
effective 

synchronization

Memory 
management

the reuse 
of physical 
pages is 

the biggest 
problem of 

concern

Reliability 
and fault 
tolerance

the OS 
should 
provide 
graceful 

degradation 
in the face of 

processor 
failure



Multicore OS 
Considerations

 The design challenge for a 

many-core multicore system 

is to efficiently harness the 

multicore processing power 

and intelligently manage the 

substantial on-chip 

resources efficiently

 Potential for parallelism 

exists at three levels:

hardware parallelism within each 
core processor, known as 

instruction level parallelism

potential for multiprogramming 
and multithreaded execution 

within each processor

potential for a single application 
to execute in concurrent                   

processes or threads across 
multiple cores



 Developer must decide what pieces can or 

should be executed simultaneously or in 

parallel Grand Central Dispatch (GCD)

• implemented in Mac Os X 10.6

• helps a developer once something has been identified 
that can be split off into a separate task

• thread pool mechanism

• allows anonymous functions as a way of specifying 
tasks



 Allows one or more cores to be dedicated to a 

particular process and then leave the 

processor alone to devote its efforts to that 

process

 Multicore OS could then act as a hypervisor 

that makes a high-level decision to allocate 

cores to applications but does little in the way 

of resource allocation beyond that



 MS-DOS 1.0 released in 1981

 4000 lines of assembly language 
source code

 ran in 8 Kbytes of memory

 used Intel 8086 microprocessor

 Windows 3.0 shipped in 1990

 16-bit

 GUI interface

 implemented as a layer on top 
of MS-DOS

 Windows 95

 32-bit version

 led to the development of 
Windows 98 and Windows Me

 Windows NT (3.1) released in 1993

 32-bit OS with the ability to 
support older DOS and Windows 
applications as well as provide   
OS/2 support

 Windows 2000

 included services and functions to 
support distributed processing

 Active Directory

 plug-and-play and power-
management facilities

 Windows XP released in 2001

 goal was to replace the versions 
of Windows based on MS-DOS 
with an OS based on NT

 Windows Vista shipped in 2007

 Windows Server released in 2008

 Windows 7 shipped in 2009, as 
well as Windows Server 2008 R2

 Windows Azure

 targets cloud computing



Windows 

Architecture



Kernel-Mode 
Components of Windows

 Executive
 contains the core OS services

 Kernel
 controls execution of the processors

 Hardware Abstraction Layer (HAL)
 maps between generic hardware commands and responses and 

those unique to a specific platform

 Device Drivers
 dynamic libraries that extend the functionality of the Executive

 Windowing and Graphics System
 implements the GUI functions



User-Mode Processes

 Four basic types are supported by Windows:

• user-mode services needed to manage the system
Special System 

Processes

• the printer spooler, event logger, and user-mode components 
that cooperate with device drivers, and various network 
services

Service Processes

• provide different OS personalities (environments)
Environment 
Subsystems

• executables (EXEs) and DLLs that provide the functionality 
users run to make use of the systemUser Applications



 Windows OS services, 
environmental 
subsystems, and 
applications are all 
structured using the 
client/server model

 Common in distributed 
systems, but can be used 
internal to a single 
system

 Processes communicate 
via RPC

 Advantages:

 it simplifies the 
Executive

 it improves reliability

 it provides a uniform 
means for applications 
to communicate with 
services via RPCs 
without restricting 
flexibility

 it provides a suitable 
base for distributed 
computing



 Two important characteristics of Windows are its support for 

threads and for symmetric multiprocessing (SMP)

 OS routines can run on any available processor, and different routines 

can execute simultaneously on different processors

 Windows supports the use of multiple threads of execution within a 

single process. Multiple threads within the same process may execute 

on different processors simultaneously

 Server processes may use multiple threads to process requests from 

more than one client simultaneously

 Windows provides mechanisms for sharing data and resources between 

processes and flexible interprocess communication capabilities



Windows Objects

 Windows draws heavily on the concepts of 

object-oriented design

 Key object-oriented concepts used by Windows 

are:

Encapsulation
Object 

class and 
instance

Inheritance Polymorphism



Windows Kernel Control Objects



 Changes and improvements:
 Engineering improvements

 the system is now built in layers which can be separately tested

 Performance improvements

 amount of memory required has been reduced

 Reliability improvements

 user-mode heap is more tolerant of memory allocation errors by     
C/C++ programmers

 Energy efficiency

 many improvements have been made

 Security

 BitLocker is now easier to set up and use

 Thread improvements

 can support hundreds of CPUs

 Dynamic Fair Share Scheduling (DFSS)



Traditional UNIX Systems

 Were developed at Bell Labs and became operational on a PDP-7 in 1970

 Incorporated many ideas from Multics

 PDP-11was a milestone because it first showed that UNIX would be an OS for all 
computers

 Next milestone was rewriting UNIX in the programming language C

 demonstrated the advantages of using a high-level language for system 
code

 Was described in a technical journal for the first time in 1974

 First widely available version outside Bell Labs was Version 6 in 1976

 Version 7, released in 1978 is the ancestor of most modern UNIX systems

 Most important of the non-AT&T systems was UNIX BSD (Berkeley Software 
Distribution)



Descriptio

n 

of       

UNIX



Traditional 
UNIX 

Kernel



Modern 

UNIX 

Kernel



 Started out as a UNIX variant for the IBM PC

 Linus Torvalds, a Finnish student of computer science, wrote the 

initial version

 Linux was first posted on the Internet in 1991

 Today it is a full-featured UNIX system that runs on several 

platforms

 Is free and the source code is available

 Key to success has been the availability of free software packages 

 Highly modular and easily configured



 Includes virtually all of the OS  
functionality in one large block 
of code that runs as a single 
process with a single address 
space

 All the functional components 
of the kernel have access to all 
of its internal data structures 
and routines

 Linux is structured as a 
collection of modules

Loadable Modules

 Relatively independent blocks

 A module is an object file whose 
code can be linked to and 
unlinked from the kernel at 
runtime

 A module is executed in kernel 
mode on behalf of the current 
process

 Have two important 
characteristics:

 Dynamic linking

 Stackable modules



Linux 

Kernel 

Module

s



Linux Kernel Components



Linux Signals

Table 2.5   Some Linux Signals 



Linux Vserver Virtual 
Machine Architecture

 Open-source, fast, 

lightweight approach to 

implementing  virtual 

machines on a Linux server

 Only a single copy of the 

Linux kernel is involved

 Supports a number of 

separate virtual servers

 Each virtual server is 

isolated from the others
 Involves four elements:

chroot – UNIX or 
Linux command to 

make the root 
directory become 
something other 
than its default

chcontext –
allocates a new 
security context

chbind – executes 
a command and 

locks the resulting 
process and its 

children into using 
a specific IP 

address

capabilities – a 
partitioning of the 

privileges 
available to a root 

user



Linux Vserver Architecture



 Operating system objectives and 
functions:

 convenience, efficiency, ability to 
evolve

 user/computer interface

 resource manager

 Evolution:

 serial processing, simple batch 
systems, multiprogrammed batch 
systems, time sharing systems

 Microsoft Windows/Windows 7

 UNIX/Linux systems

 Process

 Memory management

 real address, virtual address

 Scheduling and resource management

 Multithreading

 Symmetric multiprocessing (SMP)

 distributed OS

 object oriented design

 Virtual machines

 virtualization


