
Chapter 2

Operating System

Overview
Seventh Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

Operating Systems:

Internals and Design Principles

Operating systems are those programs that interface the machine

with the applications programs. The main function of these systems

is to dynamically allocate the shared system resources to the

executing programs. As such, research in this area is clearly

concerned with the management and scheduling of memory,

processes, and other devices. But the interface with adjacent levels

continues to shift with time. Functions that were originally part of the

operating system have migrated to the hardware. On the other side,

programmed functions extraneous to the problems being solved by the

application programs are included in the operating system.

—WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND

ENGINEERING RESEARCH STUDY,

MIT Press, 1980

Operating System

 A program that controls the execution of

application programs

 An interface between applications and

hardware
Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

 Program development: IDE

 Program execution: process creation

 Access I/O devices

 Controlled access to files

 System access

 Error detection and response

 Accounting

Key Interfaces

 Instruction set architecture (ISA)

Application binary interface (ABI)

Application programming interface (API)

A computer is a set of (shared)

resources for the movement, storage,

and processing of data

The OS is responsible for managing

these resources

Functions in the same way as ordinary

computer software

Program, or suite of programs, executed

by the processor

Frequently relinquishes control and must

depend on the processor to allow it to

regain control

Operating

System

as

Resource

Manager

Evolution of Operating
Systems

A major OS will evolve over time for a

number of reasons:

Hardware upgrades

New types of hardware

New services

Fixes

Evolution of

Operating Systems

 Stages include:

Serial
Processin
g

Simple
Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Serial Processing

Earliest Computers:

 No operating system

 programmers interacted
directly with the computer
hardware

 Computers ran from a console
with display lights, toggle
switches, some form of input
device, and a printer

 Users have access to the
computer in “series”

Problems:

 Scheduling:

 most installations used a

hardcopy sign-up sheet to

reserve computer time

 time allocations could

run short or long,

resulting in wasted

computer time

 Setup time

 a considerable amount of

time was spent just on

setting up the program to

run

Simple Batch Systems

 Early computers were very expensive

 important to maximize processor utilization

 Monitor

 user no longer has direct access to processor

 job is submitted to computer operator who batches

them together and places them on an input device

 program branches back to the monitor when finished

 Monitor controls the sequence

of events

 Resident Monitor is software

always in memory

 Monitor reads in job and gives

control

 Job returns control to monitor

 Processor executes instruction from the memory

containing the monitor

 Executes the instructions in the user program until it

encounters an ending or error condition

 “control is passed to a job” means processor is

fetching and executing instructions in a user program

 “control is returned to the monitor” means that the

processor is fetching and executing instructions from

the monitor program

Job Control Language
(JCL)

Special type of programming
language used to provide
instructions to the monitor

what compiler to use

what data to use

$JOB

$FTN

…

[FORTRAN program]

…

$LOAD

$RUN

…

[data]

…

$END

• while the user program is executing, it must not alter the memory area
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• user program executes in
user mode

• certain areas of memory
are protected from user
access

• certain instructions may not
be executed

Kernel Mode

• monitor executes in kernel
mode

• privileged instructions may
be executed

• protected areas of memory
may be accessed

Simple Batch System
Overhead

 Processor time alternates between execution of user

programs and execution of the monitor

 Sacrifices:

 some main memory is now given over to the monitor

 some processor time is consumed by the monitor

 Despite overhead, the simple batch system improves

utilization of the computer

Multiprogrammed
Batch Systems

 Processor is

often idle

 even with

automatic

job

sequencing

 I/O devices

are slow

compared to

processor

 The processor spends a certain amount of

time executing, until it reaches an I/O

instruction; it must then wait until that I/O

instruction concludes before proceeding

 There must be enough memory to hold the OS (resident

monitor) and one user program

 When one job needs to wait for I/O, the processor can switch

to the other job, which is likely not waiting for I/O

 Multiprogramming

 also known as multitasking

 memory is expanded to hold three, four, or more
programs and switch among all of them

Multiprogramming
Example

Effects on Resource
Utilization

Table 2.2 Effects of Multiprogramming on Resource Utilization

Utilization Histograms

 Can be used to handle multiple interactive

jobs

 Processor time is shared among multiple

users

 Multiple users simultaneously access the

system through terminals, with the OS

interleaving the execution of each user

program in a short burst or quantum of

computation

Table 2.3 Batch Multiprogramming versus Time Sharing

Compatible Time-
Sharing Systems

CTSS

 One of the first time-sharing
operating systems

 Developed at MIT by a group
known as Project MAC

 Ran on a computer with 32,000
36-bit words of main memory,
with the resident monitor
consuming 5000 of that

 To simplify both the monitor and
memory management a program
was always loaded to start at the
location of the 5000th word

Time Slicing

 System clock generates interrupts
at a rate of approximately one
every 0.2 seconds

 At each interrupt OS regained
control and could assign processor
to another user

 At regular time intervals the current
user would be preempted and
another user loaded in

 Old user programs and data were
written out to disk

 Old user program code and data
were restored in main memory
when that program was next given
a turn

 Operating Systems are among the most

complex pieces of software ever developed

Major advances in
development include:

• Processes

• Memory management

• Information protection and
security

• Scheduling and resource
management

• System structure

 Fundamental to the structure of operating

systems

A process can be defined as:

a program in execution

an instance of a running program

the entity that can be assigned to, and executed on, a processor

a unit of activity characterized by a single sequential thread of execution,
a current state, and an associated set of system resources

Development of the
Process

 Three major lines of computer system development

created problems in timing and synchronization that

contributed to the development:

• processor is switched among the various programs residing in main
memory

multiprogramming batch operation

• be responsive to the individual user but be able to support many
users simultaneously

time sharing

• a number of users are entering queries or updates against a
database

real-time transaction systems

Causes of Errors

 Nondeterminate
program operation
 program execution is

interleaved by the processor
when memory is shared

 the order in which programs
are scheduled may affect
their outcome

 Deadlocks

 it is possible for two or

more programs to be hung

up waiting for each other

 may depend on the chance

timing of resource

allocation and release

 Improper
synchronization
 a program must wait until

the data are available in a
buffer

 improper design of the
signaling mechanism can
result in loss or duplication

 Failed mutual
exclusion
 more than one user or

program attempts to make
use of a shared resource at
the same time

 only one routine at at time
allowed to perform an
update against the file

 The execution context is
essential:

 it is the internal data by
which the OS is able to
supervise and control the
process

 includes the contents of the
various process registers

 includes information such as
the priority of the process
and whether the process is
waiting for the completion of
a particular I/O event

 A process contains

three components:

 an executable program

 the associated data

needed by the program

(variables, work space,

buffers, etc.)

 the execution context

(or “process state”) of

the program

Process

Management

 The entire state of the

process at any instant is

contained in its context

 New features can be

designed and

incorporated into the OS

by expanding the context

to include any new

information needed to

support the feature

 The OS has five principal storage

management responsibilities:

process
isolation

automatic
allocation

and
management

support of
modular

programming

protection
and access

control

long-term
storage

 A facility that allows programs to address

memory from a logical point of view, without

regard to the amount of main memory

physically available

 Conceived to meet the requirement of having

multiple user jobs reside in main memory

concurrently

 Allows processes to be comprised of a number of

fixed-size blocks, called pages

 Program references a word by means of a virtual

address

 consists of a page number and an offset within the

page

 each page may be located anywhere in main memory

 Provides for a dynamic mapping between the virtual

address used in the program and a real (or physical)

address in main memory

Virtual
Memory

Virtual Memory
Addressing

 The nature of the

threat that concerns

an organization will

vary greatly

depending on the

circumstances

 The problem

involves controlling

access to computer

systems and the

information stored in

them

Main
issues availability

confidentiality

data
integrity

authenticity

Scheduling and
Resource Management

 Key responsibility of an OS is managing

resources

 Resource allocation policies must consider:

fairness

differential
responsivene

ss

efficiency

Key Elements of an
Operating System

Different Architectural
Approaches

Demands on operating systems require

new ways of organizing the OS

• Microkernel architecture

• Multithreading

• Symmetric multiprocessing

• Distributed operating systems

• Object-oriented design

Different approaches and design elements have been
tried:

Microkernel
Architecture

 Assigns only a few essential functions to
the kernel:

 The approach:

address
spaces

interprocess
communication

(IPC)

basic
scheduling

simplifies
implementation

provides
flexibility

is well suited to
a distributed
environment

 Technique in which a process, executing an application, is
divided into threads that can run concurrently

Thread

• dispatchable unit of work

• includes a processor context and its own data area to enable subroutine
branching

• executes sequentially and is interruptible

Process

• a collection of one or more threads and associated system resources

• programmer has greater control over the modularity of the application and
the timing of application related events

Symmetric
Multiprocessing (SMP)

 Term that refers to a computer hardware architecture and

also to the OS behavior that exploits that architecture

 Several processes can run in parallel

 Multiple processors are transparent to the user

 these processors share same main memory and I/O

facilities

 all processors can perform the same functions

 The OS takes care of scheduling of threads or processes

on individual processors and of synchronization among

processors

SMP Advantages

Performance
more than one process can be

running simultaneously, each on a
different processor

Availability
failure of a single process does

not halt the system

Incremental
Growth

performance of a system can
be enhanced by adding an

additional processor

Scaling
vendors can offer a range of

products based on the number of
processors configured in the system

Distributed Operating
System

 Provides the illusion of

 a single main memory
space

 single secondary memory
space

 unified access facilities

 State of the art for distributed
operating systems lags that of
uniprocessor and SMP
operating systems

Object-Oriented
Design

 Used for adding modular

extensions to a small kernel

 Enables programmers to

customize an operating system

without disrupting system

integrity

 Eases the development of

distributed tools and full-blown

distributed operating systems

 Virtualization

 enables a single PC or server to simultaneously run

multiple operating systems or multiple sessions of a

single OS

 a machine can host numerous applications, including

those that run on different operating systems, on a single

platform

 host operating system can support a number

of virtual machines (VM)

 each has the characteristics of a particular

OS and, in some versions of virtualization,

the characteristics of a particular hardware

platform

Virtual

Memory

Concept

• the machine on which it executes consists of the virtual memory space
assigned to the process

• the processor registers it may use

• the user-level machine instructions it may execute

• OS system calls it may invoke for I/O

• ABI defines the machine as seen by a process

Process perspective:

• machine characteristics are specified by high-level language capabilities and
OS system library calls

• API defines the machine for an application

Application perspective:

• processes share a file system and other I/O resources

• system allocates real memory and I/O resources to the processes

• ISA provides the interface between the system and machine

OS perspective:

Process and System Virtual Machines

Process and System Virtual Machines

Symmetric
Multiprocessor OS

Considerations
 A multiprocessor OS must provide all the functionality of a

multiprogramming system plus additional features to accommodate multiple

processors

 Key design issues:

Simultaneous
concurrent

processes or
threads

kernel
routines need

to be
reentrant to

allow several
processors to
execute the
same kernel

code
simultaneousl

y

Schedulin
g

any
processor

may perform
scheduling,

which
complicates
the task of
enforcing a
scheduling

policy

Synchronizatio
n

with multiple
active

processes
having potential

access to
shared address

spaces or
shared I/O

resources, care
must be taken

to provide
effective

synchronization

Memory
management

the reuse
of physical
pages is

the biggest
problem of

concern

Reliability
and fault
tolerance

the OS
should
provide
graceful

degradation
in the face of

processor
failure

Multicore OS
Considerations

 The design challenge for a

many-core multicore system

is to efficiently harness the

multicore processing power

and intelligently manage the

substantial on-chip

resources efficiently

 Potential for parallelism

exists at three levels:

hardware parallelism within each
core processor, known as

instruction level parallelism

potential for multiprogramming
and multithreaded execution

within each processor

potential for a single application
to execute in concurrent

processes or threads across
multiple cores

 Developer must decide what pieces can or

should be executed simultaneously or in

parallel Grand Central Dispatch (GCD)

• implemented in Mac Os X 10.6

• helps a developer once something has been identified
that can be split off into a separate task

• thread pool mechanism

• allows anonymous functions as a way of specifying
tasks

 Allows one or more cores to be dedicated to a

particular process and then leave the

processor alone to devote its efforts to that

process

 Multicore OS could then act as a hypervisor

that makes a high-level decision to allocate

cores to applications but does little in the way

of resource allocation beyond that

 MS-DOS 1.0 released in 1981

 4000 lines of assembly language
source code

 ran in 8 Kbytes of memory

 used Intel 8086 microprocessor

 Windows 3.0 shipped in 1990

 16-bit

 GUI interface

 implemented as a layer on top
of MS-DOS

 Windows 95

 32-bit version

 led to the development of
Windows 98 and Windows Me

 Windows NT (3.1) released in 1993

 32-bit OS with the ability to
support older DOS and Windows
applications as well as provide
OS/2 support

 Windows 2000

 included services and functions to
support distributed processing

 Active Directory

 plug-and-play and power-
management facilities

 Windows XP released in 2001

 goal was to replace the versions
of Windows based on MS-DOS
with an OS based on NT

 Windows Vista shipped in 2007

 Windows Server released in 2008

 Windows 7 shipped in 2009, as
well as Windows Server 2008 R2

 Windows Azure

 targets cloud computing

Windows

Architecture

Kernel-Mode
Components of Windows

 Executive
 contains the core OS services

 Kernel
 controls execution of the processors

 Hardware Abstraction Layer (HAL)
 maps between generic hardware commands and responses and

those unique to a specific platform

 Device Drivers
 dynamic libraries that extend the functionality of the Executive

 Windowing and Graphics System
 implements the GUI functions

User-Mode Processes

 Four basic types are supported by Windows:

• user-mode services needed to manage the system
Special System

Processes

• the printer spooler, event logger, and user-mode components
that cooperate with device drivers, and various network
services

Service Processes

• provide different OS personalities (environments)
Environment
Subsystems

• executables (EXEs) and DLLs that provide the functionality
users run to make use of the systemUser Applications

 Windows OS services,
environmental
subsystems, and
applications are all
structured using the
client/server model

 Common in distributed
systems, but can be used
internal to a single
system

 Processes communicate
via RPC

 Advantages:

 it simplifies the
Executive

 it improves reliability

 it provides a uniform
means for applications
to communicate with
services via RPCs
without restricting
flexibility

 it provides a suitable
base for distributed
computing

 Two important characteristics of Windows are its support for

threads and for symmetric multiprocessing (SMP)

 OS routines can run on any available processor, and different routines

can execute simultaneously on different processors

 Windows supports the use of multiple threads of execution within a

single process. Multiple threads within the same process may execute

on different processors simultaneously

 Server processes may use multiple threads to process requests from

more than one client simultaneously

 Windows provides mechanisms for sharing data and resources between

processes and flexible interprocess communication capabilities

Windows Objects

 Windows draws heavily on the concepts of

object-oriented design

 Key object-oriented concepts used by Windows

are:

Encapsulation
Object

class and
instance

Inheritance Polymorphism

Windows Kernel Control Objects

 Changes and improvements:
 Engineering improvements

 the system is now built in layers which can be separately tested

 Performance improvements

 amount of memory required has been reduced

 Reliability improvements

 user-mode heap is more tolerant of memory allocation errors by
C/C++ programmers

 Energy efficiency

 many improvements have been made

 Security

 BitLocker is now easier to set up and use

 Thread improvements

 can support hundreds of CPUs

 Dynamic Fair Share Scheduling (DFSS)

Traditional UNIX Systems

 Were developed at Bell Labs and became operational on a PDP-7 in 1970

 Incorporated many ideas from Multics

 PDP-11was a milestone because it first showed that UNIX would be an OS for all
computers

 Next milestone was rewriting UNIX in the programming language C

 demonstrated the advantages of using a high-level language for system
code

 Was described in a technical journal for the first time in 1974

 First widely available version outside Bell Labs was Version 6 in 1976

 Version 7, released in 1978 is the ancestor of most modern UNIX systems

 Most important of the non-AT&T systems was UNIX BSD (Berkeley Software
Distribution)

Descriptio

n

of

UNIX

Traditional
UNIX

Kernel

Modern

UNIX

Kernel

 Started out as a UNIX variant for the IBM PC

 Linus Torvalds, a Finnish student of computer science, wrote the

initial version

 Linux was first posted on the Internet in 1991

 Today it is a full-featured UNIX system that runs on several

platforms

 Is free and the source code is available

 Key to success has been the availability of free software packages

 Highly modular and easily configured

 Includes virtually all of the OS
functionality in one large block
of code that runs as a single
process with a single address
space

 All the functional components
of the kernel have access to all
of its internal data structures
and routines

 Linux is structured as a
collection of modules

Loadable Modules

 Relatively independent blocks

 A module is an object file whose
code can be linked to and
unlinked from the kernel at
runtime

 A module is executed in kernel
mode on behalf of the current
process

 Have two important
characteristics:

 Dynamic linking

 Stackable modules

Linux

Kernel

Module

s

Linux Kernel Components

Linux Signals

Table 2.5 Some Linux Signals

Linux Vserver Virtual
Machine Architecture

 Open-source, fast,

lightweight approach to

implementing virtual

machines on a Linux server

 Only a single copy of the

Linux kernel is involved

 Supports a number of

separate virtual servers

 Each virtual server is

isolated from the others
 Involves four elements:

chroot – UNIX or
Linux command to

make the root
directory become
something other
than its default

chcontext –
allocates a new
security context

chbind – executes
a command and

locks the resulting
process and its

children into using
a specific IP

address

capabilities – a
partitioning of the

privileges
available to a root

user

Linux Vserver Architecture

 Operating system objectives and
functions:

 convenience, efficiency, ability to
evolve

 user/computer interface

 resource manager

 Evolution:

 serial processing, simple batch
systems, multiprogrammed batch
systems, time sharing systems

 Microsoft Windows/Windows 7

 UNIX/Linux systems

 Process

 Memory management

 real address, virtual address

 Scheduling and resource management

 Multithreading

 Symmetric multiprocessing (SMP)

 distributed OS

 object oriented design

 Virtual machines

 virtualization

