UDiNus Repository

Metode Association Rule Dalam Menganalisa Pola Belanja Konsumen Pada Data Transaksi Penjualan Menggunakan Algoritma FP-Growth

DESSY, CHAERUNNISSA (2015) Metode Association Rule Dalam Menganalisa Pola Belanja Konsumen Pada Data Transaksi Penjualan Menggunakan Algoritma FP-Growth. Skripsi,Fakultas Ilmu Komputer.

[img]
Preview
PDF
Download (600Kb) | Preview
    [img]
    Preview
    PDF
    Download (4Kb) | Preview

      Abstract

      Banyaknya data transaksi yang tersimpan dalam database menyebabkan penumpukan data. Data tersebut dapat dimanfaatkan untuk diolah lebih lanjut menjadi suatu informasi yang dapat digunakan sebagai acuan bagi pihak Swalayan untuk menentukan pengambilan keputusan dalam kebijakan dan strategi bisnis. Dengan adanya data mining diharapkan dapat membantu Swalayan Gelael Candi Semarang untuk menggali informasi yang terkandung didalam data transaksi menjadi sebuah pengetahuan (knowledge) yang baru. Metode yang digunakan yaitu Market Basket Analysis. Association Rule, yaitu prosedur dalam Market Basket Analysis untuk mencari pengetahuan berupa hubungan antar item dalam satu dataset dan menampilkanya dalam bentuk pola asosiasi yang menjelaskan tentang kebiasaan konsumen dalam berbelanja. Algoritma yang digunakan untuk membantu menemukan pola asosiasi yaitu algoritma Frequent Pattern Growth (FP-Growth), merupakan algoritma yang sangat efisien dalam pencarian frequent itemset dalam sebuah kumpulan data dengan membangkit strukur prefix-tree atau disebut dengan FP-Tree. Pola asosiasi ditentukan oleh dua parameter, yaitu support (nilai penunjang) dan confidence (nilai kepastian). Salah satu pola yang dihasilkan dari analisis terhadap data transaksi bulan Oktober 2014 yaitu jika membeli salties maka membeli soft drink dengan nilai support = 10.27% dan nilai confidence = 45,6% yang merupakan pola dengan nilai support dan confidence tertinggi.

      Item Type: Article
      Subjects: T Technology > Teknik Informatika
      Universitas Dian Nuswantoro > Fakultas Ilmu Komputer > Teknik Informatika
      Divisions: Fakultas Ilmu Komputer
      Depositing User: Psi Udinus
      Date Deposited: 26 Nov 2015 10:13
      Last Modified: 26 Nov 2015 10:13
      URI: http://eprints.dinus.ac.id/id/eprint/16857

      Actions (login required)

      View Item