NUGROHO, YUDA SEPTIAN (2014) Data Mining Menggunakan Algoritma Na�ve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro. ( Studi Kasus: Fakultas Ilmu Komputer Angkatan 2009 ). Skripsi, Fakultas Ilmu Komputer.
| PDF - Published Version Download (4Kb) | Preview |
Abstract
Student data and data Dian Nuswantoro University student graduation produce data that is very abundant in the form of student profile data and academic data. This happens repeatedly and cause a build up of the student data that affect information retrieval to the data. This study aims to perform the classification of student data Dian Nuswantoro University of Computer Science faculty class of 2009 tiered Diploma and S1 by using data mining process using classification techniques. The method used is the CRISP-DM with a through understanding of business processes, understanding data, the data preparation, modeling, evaluation and deployment. The algorithm used for graduation classification is Naive Bayes algorithm. Naïve Bayes is a simple probabilistic based prediction technique on the application of Bayes theorem or rule with a strong independence assumption on feature, meaning that a feature is not data relating to the presence or absence of other features in the same data. Implementation using RapidMiner 5.3 is used to help find an accurate value. Attributes used is NIM, Name, Qualification, courses, Province of Origin, Gender, credits, GPA, and Graduation Year. The results of this study are used as one basis for determining policy decisions by the computer sciene faculty.
Item Type: | Article |
---|---|
Subjects: | T Technology > Teknik Informatika > INF Informatika Universitas Dian Nuswantoro > Fakultas Ilmu Komputer > Teknik Informatika > INF Informatika Semantik 2013 > INF Informatika |
Divisions: | Fakultas Ilmu Komputer > Sistem Informasi |
Depositing User: | Psi Udinus |
Date Deposited: | 16 Sep 2014 10:09 |
Last Modified: | 22 Nov 2014 04:45 |
URI: | http://eprints.dinus.ac.id/id/eprint/5542 |
Actions (login required)
View Item |